Content-adaptive Encoder Preset Prediction for Adaptive Live Streaming

被引:3
|
作者
Menon, Vignesh V. [1 ]
Amirpour, Hadi [1 ]
Rajendran, Prajit T. [2 ]
Ghanbari, Mohammad [1 ,3 ]
Timmerer, Christian [1 ]
机构
[1] Alpen Adria Univ, Christian Doppler Lab ATHENA, Klagenfurt, Austria
[2] Univ Paris Saclay, List, CEA, F-91120 Palaiseau, France
[3] Univ Essex, Sch Comp Sci & Elect Engn, Colchester, Essex, England
关键词
Live streaming; Encoder preset; QoE; HEVC;
D O I
10.1109/PCS56426.2022.10018034
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In live streaming applications, a fixed set of bitratere-solution pairs (known as bitrate ladder) is generally used to avoid additional pre-processing run-time to analyze the complexity of every video content and determine the optimized bitrate ladder. Furthermore, live encoders use the fastest available preset for encoding to ensure the minimum possible latency in streaming. For live encoders, it is expected that the encoding speed is equal to the video framerate. An optimized encoding preset may result in (i) increased Quality of Experience (QoE) and (ii) improved CPU utilization while encoding. In this light, this paper introduces a Content-Adaptive encoder Preset prediction Scheme (CAPS) for adaptive live video streaming applications. In this scheme, the encoder preset is determined using Discrete Cosine Transform (DCT)-energy-based low-complexity spatial and temporal features for every video segment, the number of CPU threads allocated for each encoding instance, and the target encoding speed. Experimental results show that CAPS yields an overall quality improvement of 0.83 dB PSNR and 3.81 VMAF with the same bitrate, compared to the fastest preset encoding of the HTTP Live Streaming (HLS) bitrate ladder using x265 HEVC open-source encoder. This is achieved by maintaining the desired encoding speed and reducing CPU idle time.
引用
收藏
页码:253 / 257
页数:5
相关论文
共 50 条
  • [1] Content-adaptive wireless streaming of instructional videos
    Tiecheng Liu
    Chekuri Choudary
    [J]. Multimedia Tools and Applications, 2006, 28 : 157 - 171
  • [2] Content-adaptive wireless streaming of instructional videos
    Liu, Tiecheng
    Choudary, Chekuri
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2006, 28 (02) : 157 - 171
  • [3] Semantic multimedia analysis for content-adaptive video streaming
    Tekalp, A. Murat
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 2089 - 2092
  • [4] EFFICIENT CONTENT-ADAPTIVE FEATURE-BASED SHOT DETECTION FOR HTTP ADAPTIVE STREAMING
    Menon, Vignesh V.
    Amirpour, Hadi
    Ghanbari, Mohammad
    Timmerer, Christian
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2174 - 2178
  • [5] Delay-distortion optimization for content-adaptive video streaming
    Ozcelebi, Tanir
    Tekalp, A. Murat
    Civanlar, M. Reha
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (04) : 826 - 836
  • [6] Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks
    Ho, Chien-Peng
    Tsai, Chun-Jen
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2007, 2007 (1)
  • [7] Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks
    Chien-Peng Ho
    Chun-Jen Tsai
    [J]. EURASIP Journal on Image and Video Processing, 2007
  • [8] Superpixels With Content-Adaptive Criteria
    Yuan, Ye
    Zhang, Wei
    Yu, Hai
    Zhu, Zhiliang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7702 - 7716
  • [9] Content-Adaptive Image Downscaling
    Kopf, Johannes
    Shamir, Ariel
    Peers, Pieter
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (06):
  • [10] Content-adaptive Lenticular Prints
    Tompkin, James
    Heinzle, Simon
    Kautz, Jan
    Matusik, Wojciech
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):