Testing for association between RNA-Seq and high-dimensional data

被引:2
|
作者
Rauschenberger, Armin [1 ]
Jonker, Marianne A. [1 ]
van de Wiel, Mark A. [1 ,2 ]
Menezes, Renee X. [1 ]
机构
[1] Vrije Univ Amsterdam, Med Ctr, Dept Epidemiol & Biostat, NL-1007 MB Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
来源
BMC BIOINFORMATICS | 2016年 / 17卷
关键词
High-dimensional; Overdispersion; Negative binomial; Global test; Integration; RNA-Seq; DIFFERENTIAL EXPRESSION ANALYSIS; MOLECULAR PROFILES; SCORE TESTS; TRANSCRIPTOME; GENES;
D O I
10.1186/s12859-016-0961-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Testing for association between RNA-Seq and other genomic data is challenging due to high variability of the former and high dimensionality of the latter. Results: Using the negative binomial distribution and a random-effects model, we develop an omnibus test that overcomes both difficulties. It may be conceptualised as a test of overall significance in regression analysis, where the response variable is overdispersed and the number of explanatory variables exceeds the sample size. Conclusions: The proposed test can detect genetic and epigenetic alterations that affect gene expression. It can examine complex regulatory mechanisms of gene expression. The R package globalSeq is available from Bioconductor.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Testing for association between RNA-Seq and high-dimensional data
    Armin Rauschenberger
    Marianne A. Jonker
    Mark A. van de Wiel
    Renée X. Menezes
    [J]. BMC Bioinformatics, 17
  • [2] Analysis of Ensemble Feature Selection for Correlated High-Dimensional RNA-Seq Cancer Data
    Polewko-Klim, Aneta
    Rudnicki, Witold R.
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT III, 2020, 12139 : 525 - 538
  • [3] qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
    Kochan, Necla
    Tutuncu, G. Yazgi
    Smyth, Gordon K.
    Gandoffo, Luke C.
    Giner, Goeknur
    [J]. PEERJ, 2019, 7
  • [4] Visualizing High-Dimensional Single-Cell RNA-seq Data via Random Projections and Geodesic Distances
    Vrahatis, Aristidis G.
    Tasoulis, Sotiris K.
    Dimitrakopoulos, Georgios N.
    Plagianakos, Vassilis P.
    [J]. 2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 115 - 120
  • [5] Searching for best lower dimensional visualization angles for high dimensional RNA-Seq data
    Zhang, Wanli
    Di, Yanming
    [J]. PEERJ, 2018, 6
  • [6] Multiple testing for high-dimensional data
    Diao, Guoqing
    Hanlon, Bret
    Vidyashankar, Anand N.
    [J]. PERSPECTIVES ON BIG DATA ANALYSIS: METHODOLOGIES AND APPLICATIONS, 2014, 622 : 95 - 108
  • [7] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [8] A Two-Stage Poisson Model for Testing RNA-Seq Data
    Auer, Paul L.
    Doerge, Rebecca W.
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
  • [9] Comparison between RNA-Seq and Affymetrix gene expression data
    Fumagalli, D.
    Haibe-Kains, B.
    Michiels, S.
    Brown, D. N.
    Gacquer, D.
    Majjaj, S.
    Salgado, R.
    Larsimont, D.
    Detour, V.
    Piccart, M.
    Sotiriou, C.
    Desmedt, C.
    [J]. CANCER RESEARCH, 2012, 72
  • [10] Cluster analysis on high dimensional RNA-seq data with applications to cancer research - An evaluation study
    Vidman, Linda
    Kallberg, David
    Ryden, Patrik
    [J]. PLOS ONE, 2019, 14 (12):