Bayesian mixture modeling for spectral density estimation

被引:9
|
作者
Cadonna, Annalisa [1 ]
Kottas, Athanasios [1 ]
Prado, Raquel [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, 1156 High St, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Logistic mixture weights; Markov chain Monte Carlo; Normal mixtures; Whittle likelihood; TIME-SERIES; OF-EXPERTS; APPROXIMATION;
D O I
10.1016/j.spl.2017.02.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a Bayesian modeling approach for spectral densities built from a local Gaussian mixture approximation to the Whittle log-likelihood. The implied model for the log spectral density is a mixture of linear functions with frequency-dependent logistic weights, which allows for general shapes for smooth spectral densities. The proposed approach facilitates efficient posterior simulation as it casts the spectral density estimation problem in a mixture modeling framework for density estimation. The methodology is illustrated with synthetic and real data sets. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 50 条
  • [1] Computational Aspects of Bayesian Spectral Density Estimation
    Chopin, N.
    Rousseau, J.
    Liseo, B.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 533 - 557
  • [2] Bayesian estimation of the spectral density of a time series
    Choudhuri, N
    Ghosal, S
    Roy, A
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1050 - 1059
  • [3] Kernel mixture model for probability density estimation in Bayesian classifiers
    Wenyu Zhang
    Zhenjiang Zhang
    Han-Chieh Chao
    Fan-Hsun Tseng
    [J]. Data Mining and Knowledge Discovery, 2018, 32 : 675 - 707
  • [4] Kernel mixture model for probability density estimation in Bayesian classifiers
    Zhang, Wenyu
    Zhang, Zhenjiang
    Chao, Han-Chieh
    Tseng, Fan-Hsun
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (03) : 675 - 707
  • [5] Mixture modeling with normalizing flows for spherical density estimation
    Tin Lok James Ng
    Andrew Zammit-Mangion
    [J]. Advances in Data Analysis and Classification, 2024, 18 : 103 - 120
  • [6] Mixture modeling with normalizing flows for spherical density estimation
    Ng, Tin Lok James
    Zammit-Mangion, Andrew
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (01) : 103 - 120
  • [7] Kullback Leibler property of kernel mixture priors in Bayesian density estimation
    Wu, Yuefeng
    Ghosal, Subhashis
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 298 - 331
  • [8] Optimally adaptive Bayesian spectral density estimation for stationary and nonstationary processes
    Nick James
    Max Menzies
    [J]. Statistics and Computing, 2022, 32
  • [9] Optimally adaptive Bayesian spectral density estimation for stationary and nonstationary processes
    James, Nick
    Menzies, Max
    [J]. STATISTICS AND COMPUTING, 2022, 32 (03)
  • [10] Mixture density estimation
    Li, JQ
    Barron, AR
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 279 - 285