Plasma magnetic cascade multiloop control system design methodology in a tokamak

被引:9
|
作者
Mitrishkin, Yuri V. [1 ,2 ]
Korenev, Pavel S. [1 ,2 ]
Kartsev, Nikolay M. [2 ]
Kuznetsov, Evgeniy A. [3 ]
Prokhorov, Artem A. [1 ,2 ]
Patrov, Mikhail I. [4 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[2] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow 117997, Russia
[3] Troitsk Inst Innovat & Fus Res, Moscow 142190, Russia
[4] Ioffe Inst, St Petersburg 194021, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
Tokamak; Plasma; Models; Actuators; Diagnostics; H-infinity control; Adaptation; H-INFINITY; POSITION CONTROL; SHAPE CONTROL; RECONSTRUCTION; BOUNDARY; IDENTIFICATION; EQUILIBRIUM; SIMULATION; TORUS; CODE;
D O I
10.1016/j.conengprac.2019.03.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper treats the methodology of the design and analysis of a tokamak plasma magnetic cascade multiloop control system with the example of the Globus-M spherical tokamak (Ioffe Institute, S-Petersburg, Russia) including a set of new features. The methodology covers: plasma equilibrium reconstruction based on the experimental data, derivation of linear plasma models relative to the reconstructed plasma equilibrium taking into account plasma diagnostics methods and equipment, development of a new original model of a thyristor current inverter as an actuator included in the system feedback, original multivariable cascade multiloop structure analysis by Relative Gain Array/mu-procedures, and design of an H-infinity, multivariable plasma shape control system with adaptation of the magnetic axis position.
引用
收藏
页码:97 / 110
页数:14
相关论文
共 50 条
  • [1] The cascade multivariable control system of poloidal magnetic fluxes in a tokamak
    A. A. Prokhorov
    Yu. V. Mitrishkin
    M. I. Patrov
    V. K. Gusev
    [J]. Automation and Remote Control, 2016, 77 : 356 - 367
  • [2] The cascade multivariable control system of poloidal magnetic fluxes in a tokamak
    Prokhorov, A. A.
    Mitrishkin, Yu. V.
    Patrov, M. I.
    Gusev, V. K.
    [J]. AUTOMATION AND REMOTE CONTROL, 2016, 77 (02) : 356 - 367
  • [3] Design of Plasma Shape Control System for KSTAR tokamak
    Hahn, Sang-hee
    Choi, J. H.
    Jin, J. K.
    Jeon, Y. M.
    Yoon, S. W.
    Kim, J.
    Bae, Y. S.
    Park, M. K.
    Park, K. R.
    Kim, Y. S.
    Yang, H. L.
    Kim, W. C.
    Oh, Y. K.
    Kwon, M.
    Walker, M. L.
    Humphreys, D. A.
    Penaflor, B. G.
    Piglowski, D. A.
    Johnson, R. D.
    Welander, A. S.
    Leuer, J. A.
    Eidietis, N. W.
    Hyatt, A. W.
    Jackson, G. L.
    Mueller, D.
    [J]. 2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 703 - +
  • [4] Magnetic control of a tokamak plasma
    Albanese, R.
    Arnbrosino, G.
    Crisanti, F.
    [J]. BURNING PLASMA DIAGNOSTICS, 2008, 988 : 395 - +
  • [5] Plasma Magnetic Control in Tokamak Devices
    Gianmaria De Tommasi
    [J]. Journal of Fusion Energy, 2019, 38 : 406 - 436
  • [6] Plasma Magnetic Control in Tokamak Devices
    De Tommasi, Gianmaria
    [J]. JOURNAL OF FUSION ENERGY, 2019, 38 (3-4) : 406 - 436
  • [7] Basic issues on tokamak plasma magnetic control
    Ariola, M.
    Pironti, A.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3119 - 3124
  • [8] Synthesis and modeling of the H∞-system of magnetic control of the plasma in the tokamak-reactor
    Dokuka, V. N.
    Kadurin, A. V.
    Mitrishkin, Yu. V.
    Khayrutdinov, R. R.
    [J]. AUTOMATION AND REMOTE CONTROL, 2007, 68 (08) : 1410 - 1428
  • [9] Synthesis and modeling of the H∞-system of magnetic control of the plasma in the tokamak-reactor
    V. N. Dokuka
    A. V. Kadurin
    Yu. V. Mitrishkin
    R. R. Khayrutdinov
    [J]. Automation and Remote Control, 2007, 68 : 1410 - 1428
  • [10] Robust Cascade LMI Design of MIMO Control System for Plasma Position, Current, and Shape Model with Time-Varying Parameters in a Tokamak
    Konkov, Artem E.
    Mitrishkin, Yuri, V
    Korenev, Pavel S.
    Patrov, Mikhail, I
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 7344 - 7349