The Development of Electromobility in Poland and EU States as a Tool for Management of CO2 Emissions

被引:60
|
作者
Tucki, Karol [1 ]
Orynycz, Olga [2 ]
Swic, Antoni [3 ]
Mitoraj-Wojtanek, Mateusz [1 ]
机构
[1] Warsaw Univ Life Sci, Dept Org & Prod Engn, Nowoursynowska St 164, PL-02787 Warsaw, Poland
[2] Bialystok Tech Univ, Dept Prod Management, Wiejska St 45A, PL-15351 Bialystok, Poland
[3] Lublin Univ Technol, Inst Technol Informat Syst, Fac Mech Engn, Nadbystrzycka 38 D, PL-20618 Lublin, Poland
关键词
electromobility; CO2; reduction; EU; ELECTRIC VEHICLES; ENERGY-CONSUMPTION; ROAD TRANSPORT; EUROPEAN-UNION; GHG EMISSIONS; NOX EMISSIONS; SYSTEM; OPTIMIZATION; PERSPECTIVES; DIESEL;
D O I
10.3390/en12152942
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The article analyzes the dynamics of the development of the electromobility sector in Poland in the context of the European Union and due to the economic situation and development of the electromobility sector in the contexts of Switzerland and Norway. On the basis of obtained data, a forecast was made which foresees the most likely outlook of the electric car market in the coming years. The forecast was made using the creeping trend method, and extended up to 2030. As part of the analysis of the effect of the impact of electromobility, an original method was proposed for calculating the primary energy factor (PEF) primary energy ratio in the European Union and in its individual countries, which illustrates the conversion efficiency of primary energy into electricity and the overall efficiency of the power system. The original method was also verified, referring to the methods proposed by the Fraunhofer-Institut. On the basis of all previous actions and analyses, an assessment was made of the impact of the development of the electromobility sector on air quality in the countries studied. Carbon dioxide tank-to-wheels emission reductions which result from the conversion of the car fleet from conventional vehicles to electric motors were then calculated. In addition to reducing carbon dioxide emissions, other pollutant emissions were also calculated, such as carbon monoxide (CO), nitrogen oxides (NOx) and particulate matter (PM). The increase in the demand for electricity resulting from the needs of electric vehicles was also estimated. On this basis, and also on the basis of previously calculated primary energy coefficients, the emission reduction values have been adjusted for additional emissions resulting from the generation of electricity in power plants.
引用
收藏
页数:22
相关论文
共 50 条