Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data

被引:9
|
作者
Attaoui, Said [1 ,2 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Dept Math, Sidi Bel Abbes 22000, Algeria
[2] USTO MB, Dept Math, El Mnaouer Oran 31000, Algeria
关键词
Asymptotic normality; Conditional density estimation; Conditional mode estimation; Functional Hilbert space; Single-index model; Uniform almost complete convergence; alpha-mixing dependency; NONPARAMETRIC REGRESSION; PREDICTION;
D O I
10.1007/s10182-014-0227-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate a nonparametric estimation of the conditional density of a scalar response variable given a random variable taking values in separable Hilbert space. We establish under general conditions the uniform almost complete convergence rates and the asymptotic normality of the conditional density kernel estimator, when the variables satisfy the strong mixing dependency, based on the single-index structure. The asymptotic confidence intervals of conditional density function are given, for . We further demonstrate the impact of this functional parameter to the conditional mode estimate. Simulation study is also presented. Finally, the estimation of the functional index via the pseudo-maximum likelihood method is discussed, but not tackled.
引用
收藏
页码:257 / 286
页数:30
相关论文
共 50 条