Mass transport in electrochemical nanogap sensors

被引:22
|
作者
Mathwig, Klaus [1 ]
Lemay, Serge G. [1 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Electrochemical sensor; Mass transport; Finite-element methods; Redox cycling; Nanofluidics; NANOFLUIDIC CHANNELS; ELECTRICAL DETECTION; ELECTRODES; KINETICS; SYSTEMS;
D O I
10.1016/j.electacta.2013.05.142
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanofluidic thin-layer cells based on redox cycling allow for extremely sensitive electrochemical detection. Here we establish a physical mass-transfer model for analyte molecules in these transducers which takes into account advective and diffusive transport of both oxidized and reduced species as well as reversible dynamic adsorption at the sensor surfaces. We use finite-element modeling to determine the transient response of nanogap sensors; numerically we predict that the response time can be reduced substantially by pressure-driven advection while the faradaic limiting current remains unaffected by this flow for all experimentally accessible flow rates. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:943 / 949
页数:7
相关论文
共 50 条
  • [1] Study of the factors affecting mass transport in electrochemical gas sensors
    Hitchman, ML
    Cade, NJ
    Gibbs, TK
    Hedley, NJM
    [J]. ANALYST, 1997, 122 (11) : 1411 - 1417
  • [2] Ion Transport within High Electric Fields in Nanogap Electrochemical Cells
    Xiong, Jiewen
    Chen, Qianjin
    Edwards, Martin A.
    White, Henry S.
    [J]. ACS NANO, 2015, 9 (08) : 8520 - 8529
  • [3] In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors
    Sarah May Sibug-Torres
    David-Benjamin Grys
    Gyeongwon Kang
    Marika Niihori
    Elle Wyatt
    Nicolas Spiesshofer
    Ashleigh Ruane
    Bart de Nijs
    Jeremy J. Baumberg
    [J]. Nature Communications, 15
  • [4] In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors
    Sibug-Torres, Sarah May
    Grys, David-Benjamin
    Kang, Gyeongwon
    Niihori, Marika
    Wyatt, Elle
    Spiesshofer, Nicolas
    Ruane, Ashleigh
    de Nijs, Bart
    Baumberg, Jeremy J.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] Modulating Selectivity in Nanogap Sensors
    Zafarani, Hamid Reza
    Mathwig, Klaus
    Lemay, Serge G.
    Sudholter, Ernst J. R.
    Rassaei, Liza
    [J]. ACS SENSORS, 2016, 1 (12): : 1439 - 1444
  • [6] Interplay of Effective Surface Area, Mass Transport, and Electrochemical Features in Nanoporous Nucleic Acid Sensors
    Veselinovic, Jovana
    AlMashtoub, Suzan
    Nagella, Sachit
    Seker, Erkin
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (15) : 10751 - 10758
  • [7] Redox cycling in nanogap electrochemical cells
    White, Henry S.
    McKelvey, Kim
    [J]. CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 7 : 48 - 53
  • [8] Molecular Threading-Dependent Mass Transport in Paper Origami for Single-Step Electrochemical DNA Sensors
    Ye, Dekai
    Li, Li
    Li, Zhenhua
    Zhang, Yueyue
    Li, Min
    Shi, Jiye
    Wang, Lihua
    Fan, Chunhai
    Yu, Jinghua
    Zuo, Xiaolei
    [J]. NANO LETTERS, 2019, 19 (01) : 369 - 374
  • [9] Integrated Glass Microfluidics with Electrochemical Nanogap Electrodes
    Sarkar, Sahana
    Nieuwenhuis, Ab F.
    Lemay, Serge G.
    [J]. ANALYTICAL CHEMISTRY, 2023, 95 (09) : 4266 - 4270
  • [10] Influence of magnetic forces on electrochemical mass transport
    Hinds, G
    Coey, JMD
    Lyons, MEG
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (05) : 215 - 218