On the identification of non-linear mechanical systems using orthogonal functions

被引:29
|
作者
Pacheco, RP
Steffen, V
机构
[1] Univ Fed Uberlandia, Dynam Syst Lab, Sch Mech Engn, Uberlandia, MG, Brazil
[2] Uniminas, Dept Ind Engn, Uberlandia, MG, Brazil
关键词
non-linear systems; parameter identification; orthogonal functions;
D O I
10.1016/S0020-7462(03)00112-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Real world mechanical systems present non-linear behavior and in many cases simple linearization in modeling the system would not lead to satisfactory results. Coulomb damping and cubic stiffness are typical examples of system parameters currently used in non-linear models of mechanical systems. This paper uses orthogonal functions to represent input and output signals. These functions are easily integrated by using a so-called operational matrix of integration. Consequently, it is possible to transform the non-linear differential equations of motion into algebraic equations. After mathematical manipulation the unknown linear and non-linear parameters are determined. Numerical simulations, involving single and two degree-of-freedom mechanical systems, confirm the efficiency of the above methodology. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1147 / 1159
页数:13
相关论文
共 50 条
  • [1] IDENTIFICATION OF NON-LINEAR MECHANICAL SYSTEMS
    TUMANOV, YA
    LAVROV, VY
    MARKOV, YG
    [J]. SOVIET APPLIED MECHANICS, 1981, 17 (09): : 855 - 858
  • [2] Non-linear mechanical systems identification using linear systems with random parameters
    Bellizzi, S
    Defilippi, M
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2003, 17 (01) : 203 - 210
  • [3] IDENTIFICATION OF MIMO NON-LINEAR SYSTEMS USING A FORWARD-REGRESSION ORTHOGONAL ESTIMATOR
    BILLINGS, SA
    CHEN, S
    KORENBERG, MJ
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (06) : 2157 - 2189
  • [4] Proper orthogonal decomposition for model updating of non-linear mechanical systems
    Lenaerts, V
    Kerschen, G
    Golinval, JC
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2001, 15 (01) : 31 - 43
  • [5] Using orthogonal functions for identification and sensitivity analysis of mechanical systems
    Pacheco, RP
    Steffen, V
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2002, 8 (07) : 993 - 1021
  • [6] Orthogonal functions techniques for the identification of mechanical systems
    Pacheco, RP
    Steffen, V
    Rade, DA
    [J]. PROCEEDINGS OF IMAC-XIX: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, 2001, 4359 : 768 - 774
  • [7] Identification of Non-Linear RF Systems Using Backpropagation
    Kristensen, Andreas Toftegaard
    Burg, Andreas
    Balatsoukas-Stimming, Alexios
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
  • [8] IDENTIFICATION OF NON-LINEAR OUTPUT-AFFINE SYSTEMS USING AN ORTHOGONAL LEAST-SQUARES ALGORITHM
    BILLINGS, SA
    KORENBERG, MJ
    CHEN, S
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1988, 19 (08) : 1559 - 1568
  • [9] Non-linear vibrations of mechanical systems
    Wolf, H
    [J]. STROJARSTVO, 1996, 38 (01): : 5 - 12
  • [10] NON-LINEAR OSCILLATIONS OF MECHANICAL SYSTEMS
    BORISENKO, VG
    GULYAEV, VI
    DEKHTYARYUK, ES
    [J]. SOVIET APPLIED MECHANICS, 1981, 17 (10): : 932 - 937