Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst

被引:19
|
作者
Park, June [1 ,3 ]
Kim, Sudeok [2 ]
Sim, Yumin [1 ]
Yoon, Ok Ja [1 ,5 ]
Han, Min Su [2 ]
Yang, Hae Suk [1 ]
Kim, Young Yi [4 ]
Jhon, Young Min [3 ]
Kim, Jinbae [1 ,5 ]
Seong, Maeng-Je [1 ]
机构
[1] Chung Ang Univ, Dept Phys, Seoul 156756, South Korea
[2] Chung Ang Univ, Dept Chem, Seoul 156756, South Korea
[3] Korea Inst Sci & Technol, Sensor Syst Res Ctr, Seoul 136791, South Korea
[4] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, Gyeonggi Do, South Korea
[5] Chung Ang Univ, Inst Innovat Funct Imaging, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
CdS nanowire; CVD growth; Au nanoparticle catalyst; CONTROLLABLE SYNTHESIS; GOLD NANOPARTICLES; EVAPORATION; GROWTH; NANOSTRUCTURES; EVOLUTION; ARRAYS; ROUTE; SIZE;
D O I
10.1016/j.jallcom.2015.10.298
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CdS nanowires were synthesized using a simple synthesis process using Au nanoparticles (average diameter: 13 nm) as catalyst. The growth conditions were optimized by varying the substrate temperature and the growth time of a thermal chemical-vapor-deposition system. CdS nanowires were successfully grown at temperatures above 480 degrees C. In fact, high-quality nanowires, with hexagonal wurtzite structures and an average diameter of 25 nm and length of 1.46 mu m, were obtained after a 30-min synthesis at a growth temperature of 520 degrees C. Electron microscope images revealed that our CdS nanowires, grown at relatively lower growth temperatures, have higher average-aspect-ratio and smaller average-diameter than those previously reported in the literature. Our synthesis method resulted in CdS nanowires only without producing nanorods and nanobelts, which make it unnecessary to filter and purify nanowires from the mixture of nanowires, nanorods, and nanobelts. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 43
页数:6
相关论文
共 50 条
  • [1] Synthesis of high-quality CdS nanowires and their application as humidity sensors
    Du, Lingzhi
    Zhang, Yanhua
    Lei, Youan
    Zhao, Haipeng
    [J]. MATERIALS LETTERS, 2014, 129 : 46 - 49
  • [2] A simple route to the synthesis of high-quality NiO nanoparticles
    C.T. Meneses
    W.H. Flores
    F. Garcia
    J.M. Sasaki
    [J]. Journal of Nanoparticle Research, 2007, 9 : 501 - 505
  • [3] A simple route to the synthesis of high-quality NiO nanoparticles
    Meneses, C. T.
    Flores, W. H.
    Garcia, F.
    Sasaki, J. M.
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (03) : 501 - 505
  • [4] Growth of high-quality ZnO nanowires without a catalyst
    Abdulgafour, H. I.
    Hassan, Z.
    Al-Hardan, N. H.
    Yam, F. K.
    [J]. PHYSICA B-CONDENSED MATTER, 2010, 405 (19) : 4216 - 4218
  • [5] PREPARATION OF CdS NANOWIRES CATALYZED BY Au NANOPARTICLES
    Zayas-Bazan, P. G.
    Gutierrez, K. Z-B
    Santana, G.
    Vazquez, O.
    Santoyo-Salazar, J.
    Contreras-Puente, G.
    Gonzalez, J. C.
    de Melo, O.
    [J]. REVISTA CUBANA DE FISICA, 2014, 31 (01): : 38 - 40
  • [6] Growth of ZnO Nanowires Using Au/Pd Nanoparticles as Catalyst
    Solis-Pomar, Francisco
    Martinez-Guerra, Eduardo
    Melendrez-Castro, Manuel
    Perez-Tijerina, Eduardo
    [J]. JOURNAL OF NANO RESEARCH, 2011, 14 : 147 - 156
  • [7] Synthesis and Properties of High-Quality InN Nanowires and Nanonetworks
    Z. Cai
    S. Garzon
    M.V.S. Chandrashekhar
    R.A. Webb
    G. Koley
    [J]. Journal of Electronic Materials, 2008, 37 : 585 - 592
  • [8] Synthesis and properties of high-quality InN nanowires and nanonetworks
    Cai, Z.
    Garzon, S.
    Chandrashekhar, M. V. S.
    Webb, R. A.
    Koley, G.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (05) : 585 - 592
  • [9] Electrochemical Synthesis of High-Quality AgTCNQ Nanowires Using Carbon Nanotube Electrodes
    Ren, Liang
    Fu, Lei
    Liu, Yuwen
    Chen, Shengli
    Liu, Zhongfan
    [J]. ADVANCED MATERIALS, 2009, 21 (46) : 4742 - +
  • [10] Efficient and Facile Synthesis of High-Quality Au Nanotwins
    Wang, Hongyu
    Luo, Jing
    Zhu, Huirong
    Ge, Chenjiao
    He, Liang
    Wang, Hao
    Wu, Min
    Wang, Yixuan
    Yang, Xinyi
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 94 (01) : 231 - 232