Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions

被引:69
|
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Rossi, Julio D. [2 ]
机构
[1] Catholic Univ Chile, Dept Matemat, Santiago 22, Chile
[2] Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
CAHN-HILLIARD EQUATION; PHASE-TRANSITIONS; CONVOLUTION MODEL; STABILITY;
D O I
10.1007/s11856-009-0019-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a model for nonlocal diffusion with Dirichlet boundary conditions in a bounded smooth domain. We prove that solutions of properly rescaled nonlocal problems approximate uniformly the solution of the corresponding Dirichlet problem for the classical heat equation.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条