NONLINEAR GAUSSIAN MIXTURE SMOOTHING FOR ORBIT DETERMINATION

被引:0
|
作者
DeMars, Kyle J. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
来源
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The forward filtering solution to the Bayesian estimation problem provides the best possible solution for a probability density function given all past and current data. The backward smoothing solution, by contrast, makes use of all data over a fixed interval, through a fixed data lag, or beyond a fixed point in order to determine an improved solution for the probability density function. Achieving a better understanding of the probabilistic description of the state in orbit determination is key to providing reliable situational awareness. This paper investigates a method of combining forward filtering and backward smoothing solutions for non-Gaussian distributions in the orbit determination problem. A simulation of a low-Earth orbit tracking scenario is considered, where a forward filter/backward smoother is applied to assess and compare the performance of filtering and smoothing recursions in a nonlinear, non-Gaussian orbit determination problem.
引用
收藏
页码:2117 / 2133
页数:17
相关论文
共 50 条
  • [1] Smoothing Algorithm for Nonlinear Systems Using Gaussian Mixture Models
    Lee, Daniel J.
    Campbell, Mark E.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2015, 38 (08) : 1438 - 1451
  • [2] Iterative Smoothing Approach using Gaussian Mixture Models for Nonlinear Estimation
    Lee, Daniel J.
    Campbell, Mark E.
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 2498 - 2503
  • [3] Probabilistic Initial Orbit Determination Using Gaussian Mixture Models
    DeMars, Kyle J.
    Jah, Moriba K.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2013, 36 (05) : 1324 - 1335
  • [4] A Gaussian Deterministic approach to smoothing and prediction for application to spacecraft attitude and orbit determination
    Hodgart, MS
    Tortora, P
    Morrison, N
    [J]. PROCEEDINGS OF THE IEEE 2000 NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE: ENGINEERING TOMORROW, 2000, : 687 - 695
  • [5] INITIAL ORBIT DETERMINATION VIA GAUSSIAN MIXTURE APPROXIMATION OF THE ADMISSIBLE REGION
    DeMars, Kyle J.
    Jah, Moriba K.
    [J]. SPACEFLIGHT MECHANICS 2012, 2012, 143 : 2359 - +
  • [6] Estimating Mixture of Gaussian Processes by Kernel Smoothing
    Huang, Mian
    Li, Runze
    Wang, Hansheng
    Yao, Weixin
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2014, 32 (02) : 259 - 270
  • [7] Adaptive Gaussian Mixture based orbit determination with combined atmospheric density uncertainty consideration
    Schiemenz, Fabian
    Utzmann, Jens
    Kayal, Hakan
    [J]. ADVANCES IN SPACE RESEARCH, 2020, 66 (07) : 1609 - 1634
  • [8] Kernel-based ensemble gaussian mixture filtering for orbit determination with sparse data
    Yun, Sehyun
    Zanetti, Renato
    Jones, Brandon A.
    [J]. ADVANCES IN SPACE RESEARCH, 2022, 69 (12) : 4179 - 4197
  • [9] GAUSSIAN MIXTURE APPROXIMATION OF THE BEARINGS-ONLY INITIAL ORBIT DETERMINATION LIKELIHOOD FUNCTION
    Psiaki, Mark L.
    Weisman, Ryan M.
    Jah, Moriba K.
    [J]. ASTRODYNAMICS 2015, 2016, 156 : 111 - 134
  • [10] Gaussian Mixture Approximation of Angles-Only Initial Orbit Determination Likelihood Function
    Psiaki, Mark L.
    Weisman, Ryan M.
    Jah, Moriba K.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (11) : 2807 - 2819