Fusion of hidden Markov random field models and its Bayesian estimation

被引:14
|
作者
Destrempes, Francois
Angers, Jean-Francois
Mignotte, Max
机构
[1] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
关键词
bayesian estimation; color and texture segmentation; Exploration/Selection algorithm; Exploration/Selection/Estimation procedure; fusion of hidden Markov random field models; Julesz ensembles; Markov Chain Monte Carlo (MCM) algorithm;
D O I
10.1109/TIP.2006.877522
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a Hidden Markov Random Field (HMRF) data-fusion model. The proposed model is applied to the segmentation of natural images based on the fusion of colors and textons into Julesz ensembles. The corresponding Exploration/ Selection/Estimation (ESE) procedure for the estimation of the parameters is presented. This method achieves the estimation of the parameters of the Gaussian kernels, the mixture proportions, the region labels, the number of regions, and the Markov hyper-parameter. Meanwhile, we present a new proof of the asymptotic convergence of the ESE procedure, based on original finite time bounds for the rate of convergence.
引用
收藏
页码:2920 / 2935
页数:16
相关论文
共 50 条
  • [1] A stochastic method for Bayesian estimation of hidden Markov random field models with application to a color model
    Destrempes, F
    Mignotte, M
    Angers, JF
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (08) : 1096 - 1108
  • [2] Estimation of Viterbi path in Bayesian hidden Markov models
    Jüri Lember
    Dario Gasbarra
    Alexey Koloydenko
    Kristi Kuljus
    [J]. METRON, 2019, 77 : 137 - 169
  • [3] Estimation of Viterbi path in Bayesian hidden Markov models
    Lember, Juri
    Gasbarra, Dario
    Koloydenko, Alexey
    Kuljus, Kristi
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 137 - 169
  • [4] Bayesian estimation of ion channel hidden Markov models
    Rosales, R
    Stark, JA
    Fitzgerald, W
    Hladky, SB
    [J]. BIOPHYSICAL JOURNAL, 1998, 74 (02) : A321 - A321
  • [5] Bayesian fusion of hidden Markov models for understanding bimanual movements
    Shamaie, A
    Sutherland, A
    [J]. SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2004, : 602 - 607
  • [6] Distributed estimation and detection for sensor networks using hidden Markov random field models
    Dogandzic, Aleksandar
    Zhang, Benhong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (08) : 3200 - 3215
  • [7] Bayesian Monte Carlo estimation for profile hidden Markov models
    Lewis, Steven J.
    Raval, Alpan
    Angus, John E.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1198 - 1216
  • [8] AN ASYMPTOTIC ANALYSIS OF BAYESIAN STATE ESTIMATION IN HIDDEN MARKOV MODELS
    Yamazaki, Keisuke
    [J]. 2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [9] Bayesian image segmentation based on an inhomogeneous hidden Markov random field
    Sun, JX
    Gu, DB
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, : 596 - 599
  • [10] Hidden Markov random field models for TCA image analysis
    Klauenberg, Katy
    Lagona, Francesco
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) : 855 - 868