Synthesis, structural, optical, electrical and Mossbauer spectroscopic studies of Co substituted Li0.5Fe2.5O4

被引:26
|
作者
Sharma, Parul [1 ]
Thakur, Preeti [1 ]
Mattei, Jean Luc [2 ]
Queffelec, Patrick [2 ]
Thakur, Atul [1 ,3 ]
机构
[1] Shoolini Univ, Sch Phys & Mat Sci, Solan, HP, India
[2] CNRS, Lab Sci & Tech Informat Commun & Connaissance, UMR 6285, CS 93837, 6 Av Le Gorgeu, F-29238 Brest 3, France
[3] Innovat Sci Res Soc, Nanotechnol Wing, Shimla 171001, Himachal Prades, India
关键词
Metal oxides; Wet chemical method; Spinel phase; DOPED LITHIUM FERRITE; MAGNETIC-PROPERTIES; DIELECTRIC-PROPERTIES; NANOPARTICLES; NANOFERRITES; MANGANESE; BEHAVIOR; NUCLEI;
D O I
10.1016/j.jmmm.2016.01.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A series of cobalt substituted lithium ferrite Li0.5CoxFe2.5-xO4 with x=0, 0.2, 0.4 was prepared by a chemical technique called citrate precursor method. In this technique citric acid was used as a reducing agent. Structural, morphological, topographical, optical, electrical, and magnetic properties were studied by using X -Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, DC resistivity, Mossbauer Spectroscopy. XRD patterns showed characteristic (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), (4 4 0) peaks which confirmed the inverse spinel phase. SEM and TEM support the formation of cubic nanoparticles. FTIR studies reported the ferrite peaks between 400 cm(-1) and 800 cm(-1) confirming the inverse spinel structure. Five optical Raman modes (A(1g)+E-g+3F(2g)), characteristics of the cubic spinel structure with (P4332) space group are also observed. Electrical DC resistivity studied from room temperature to 300 degrees C showed the semiconducting behavior of lithium ferrite. Porosity, transition temperature and activation energy are found to decrease with cobalt ion concentration. The room temperature Mossbauer spectra of all the samples showed normal Zeeman Splitting sextets supporting the formation of ferromagnetic phase. With increase in cobalt content, the value of hyperfine field at A site is found to vary from 53.15 to 54.96 T whereas at B site it vary from 54.79 to 52.82 T. The obtained results have been explained based on possible mechanisms, models and theories. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 50 条
  • [1] Structural and magnetic properties of Co substituted Li0.5Fe2.5O4
    Patil, R. P.
    Patil, S. B.
    Jadhav, B. V.
    Delekar, S. D.
    Hankare, P. P.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 401 : 870 - 874
  • [2] Mossbauer study of Li0.5Fe2.5O4
    Oak, HN
    Baek, KS
    Yu, KS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (05) : 1131 - 1136
  • [3] Effect of silica matrix on structural, optical and electrical properties of Li0.5Fe2.5O4 nanoparticles
    Barde, Nilesh P.
    Shewale, Sunil S.
    Solanki, Piyush S.
    Shah, Nikesh A.
    Bardapurkar, Pranav P.
    SCRIPTA MATERIALIA, 2021, 194
  • [4] Synthesis, structure and electrical conductivity studies of inverse spinel Li0.5Fe2.5O4
    Mohanty, Viswarupa
    Cheruku, Rajesh
    Vijayan, Lakshroi
    Govindaraj, G.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2013, 51 (05) : 381 - 384
  • [5] ELECTRICAL RELAXATION STUDIES OF Li0.5Fe2.5O4 PREPARED BY TWO DIFFERENT TECHNIQUES
    Mohanty, Viswarupa
    Cheruku, Rajesh
    Vijayan, Lakshmi
    Govindaraj, G.
    Solid State Ionics: Ionics for Sustainable World, 2013, : 479 - 489
  • [6] Structural and Mossbauer studies of nanocrystalline Mn4+-doped Li0.5Fe2.5O4 particles prepared by mechanical milling
    Widatallah, H. M.
    Al-Mabsali, F. N.
    Al-Hajri, F. S.
    Khalifa, N. O.
    Gismelseed, A. M.
    Al-Rawas, A. D.
    Elzain, M.
    Yousif, A.
    HYPERFINE INTERACTIONS, 2016, 237
  • [7] Permeability and magnetic interactions in Co2+ substituted Li0.5Fe2.5O4 alloys
    Shirsath, Sagar E.
    Kadam, R. H.
    Mane, M. L.
    Ghasemi, Ali
    Yasukawa, Yukiko
    Liu, Xiaoxi
    Morisako, Akimitsu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 575 : 145 - 151
  • [8] Lithium ferrite (Li0.5Fe2.5O4): synthesis, structural, morphological and magnetic evaluation for storage
    Ahmad, Mukhtar
    Shahid, Muhammad
    Alanazi, Yousef Mohammed
    Rehman, Atiq Ur
    Asif, Muahmmad
    Dunnill, Charles W.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 18 : 3386 - 3395
  • [9] THERMOGRAVIMETRIC AND MOSSBAUER INVESTIGATION OF THE REDUCTION OF ALPHA-FE2O3 AND LI0.5FE2.5O4
    RAMACHANDRAN, N
    CHAKRABARTY, DK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 1980, 89 (06): : 533 - 538
  • [10] LINEAR MAGNETIC BIREFRINGENCE IN LI0.5FE2.5O4
    PASTOR, K
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1975, 68 (01): : K13 - K16