A quality-aware spatial data warehouse for querying hydroecological data

被引:11
|
作者
Berrahou, L. [1 ]
Lalande, N. [1 ]
Serrano, E. [3 ]
Molla, G. [1 ]
Berti-Equille, L. [3 ,4 ]
Bimonte, S. [2 ]
Bringay, S. [5 ]
Cernesson, F. [1 ]
Grac, C. [6 ]
Ienco, D. [1 ]
Le Ber, F. [7 ]
Teisseire, M. [1 ]
机构
[1] AgroParisTech, IRSTEA, TETIS, F-34000 Montpellier, France
[2] IRSTEA, TSCF, F-63170 Aubiere, France
[3] ESPACE DEV, IRD, F-34000 Montpellier, France
[4] QCRI, Doha, Qatar
[5] Univ Montpellier 3, LIRMM, F-34000 Montpellier, France
[6] Univ Strasbourg, LIVE, CNRS, ENGEES, F-67000 Strasbourg, France
[7] Univ Strasbourg, ICUBE, ENGEES, CNRS, F-67400 Illkirch Graffenstaden, France
关键词
Information system; Data warehouse modeling and design; Data quality; Hydroecological data;
D O I
10.1016/j.cageo.2015.09.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Addressing data quality issues in information systems remains a challenging task. Many approaches only tackle this issue at the extract, transform and load steps. Here we define a comprehensive method to gain greater insight into data quality characteristics within data warehouse. Our novel architecture was implemented for an hydroecological case study where massive French watercourse sampling data are collected. The method models and makes effective use of spatial, thematic and temporal accuracy, consistency and completeness for multidimensional data in order to offer analysts a "data quality" oriented framework. The results obtained in experiments carried out on the Saone River dataset demonstrated the relevance of our approach. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [1] Truthful Data Quality Elicitation for Quality-Aware Data Crowdsourcing
    Gong, Xiaowen
    Shroff, Ness B.
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (01): : 326 - 337
  • [2] Quality-aware sensor data collection
    Han, Qi
    Hakkarinen, Doug
    Boonma, Pruet
    Suzuki, Junichi
    [J]. INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2010, 7 (03) : 127 - 140
  • [3] Quality-aware visual data analysis
    Matthew Ward
    Zaixian Xie
    Di Yang
    Elke Rundensteiner
    [J]. Computational Statistics, 2011, 26 : 567 - 584
  • [4] Quality-aware replication of multimedia data
    Tu, YC
    Yan, JF
    Prabhakar, S
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2005, 3588 : 240 - 249
  • [5] Quality-aware visual data analysis
    Ward, Matthew
    Xie, Zaixian
    Yang, Di
    Rundensteiner, Elke
    [J]. COMPUTATIONAL STATISTICS, 2011, 26 (04) : 567 - 584
  • [6] Incentivizing Truthful Data Quality for Quality-Aware Mobile Data Crowdsourcing
    Gong, Xiaowen
    Shroff, Ness
    [J]. PROCEEDINGS OF THE 2018 THE NINETEENTH INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC '18), 2018, : 161 - 170
  • [7] Online Data Quality Learning for Quality-Aware Crowdsensing
    Zhang, Xiangyu
    Gong, Xiaowen
    [J]. 2019 16TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), 2019,
  • [8] Quality-Aware Data Allocation in Approximate DRAM
    Raha, Arnab
    Jayakumar, Hrishikesh
    Sutar, Soubhagya
    Raghunathan, Vijay
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPILERS, ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS (CASES), 2015, : 89 - 98
  • [9] Effective Quality-Aware Sensor Data Management
    D'Aniello, Giuseppe
    Gaeta, Matteo
    Tzung-Pei Hong
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2018, 2 (01): : 65 - 77
  • [10] Design of a Quality-Aware Data Capture System
    Mehta, R. Vasanth Kumar
    Verma, Shubham
    [J]. DATA MINING AND BIG DATA, DMBD 2017, 2017, 10387 : 275 - 282