CONVERGENCE OF CONDITIONAL METROPOLIS-HASTINGS SAMPLERS

被引:0
|
作者
Jones, Galin L. [1 ]
Roberts, Gareth O. [2 ]
Rosenthal, Jeffrey S. [3 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[3] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Markov chain Monte Carlo algorithm; independence sampler; Gibbs sampler; geometric ergodicity; convergence rate; CHAIN MONTE-CARLO; EXPLORING POSTERIOR DISTRIBUTIONS; RANDOM EFFECTS MODEL; GIBBS SAMPLER; MARKOV-CHAINS; GEOMETRIC ERGODICITY; ALGORITHMS; RATES; ESTIMATORS; INFERENCE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with Metropolis Hastings updates, resulting in a conditional Metropolis Hastings sampler (CMH sampler). We develop conditions under which the CMH sampler will be geometrically or uniformly ergodic. We illustrate our results by analysing a CMH sampler used for drawing Bayesian inferences about the entire sample path of a diffusion process, based only upon discrete observations.
引用
收藏
页码:422 / 445
页数:24
相关论文
共 50 条