Microphase separation in nanocomposite gels

被引:10
|
作者
Osaka, Noboru [1 ]
Endo, Hitoshi [1 ]
Nishida, Toshihiko [1 ]
Suzuki, Takuya [1 ]
Li, Huan-jun [2 ]
Haraguchi, Kazutoshi [2 ]
Shibayama, Mitsuhiro [1 ]
机构
[1] Univ Tokyo, Neutron Sci Lab, Inst Solid State Phys, Tokai, Ibaraki 3191106, Japan
[2] Kawamura Inst Chem Res, Sakura, Chiba 2850078, Japan
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 06期
关键词
POLYMER NANOCOMPOSITES;
D O I
10.1103/PhysRevE.79.060801
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Microphase separation in poly(N-isopropylacrylamide)(PNIPA)-clay nanocomposite hydrogels (NC gels) is investigated by means of contrast-variation small-angle neutron scattering (CV-SANS) and dynamic light scattering (DLS). By using CV-SANS, it is revealed that microphase separation occurs in NC gels above the lower-critical solution temperature (LCST) of PNIPA aqueous solutions. The observed partial scattering functions show that only the spatial distribution of PNIPA chains is highly distorted by microphase separation and PNIPA chains are preferentially adsorbed on the clay surfaces, where the PNIPA-rich phase forms nanoscaled bicontinuous structure mediated by the clay particles. Additional DLS measurements for dilute solutions with PNIPA and/or the clay nanoparticles confirm that aggregation of PNIPA above the LCST is dramatically suppressed by addition of clay particles. Based on these observations, we conclude that strong affinity between the polymer and clay has a significant effect on the phase separation in NC gels and allows one to tune the length scale of the phase separation phenomenon by clay concentration.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] PHYSICAL GELS AND MICROPHASE SEPARATION IN MULTIBLOCK COPOLYMERS
    GLOTZER, SC
    BANSIL, R
    GALLAGHER, PD
    GYURE, MF
    SCIORTINO, F
    STANLEY, HE
    [J]. PHYSICA A, 1993, 201 (04): : 482 - 495
  • [2] Model of microphase separation in two-dimensional gels
    Peleg, Orit
    Kroger, Martin
    Rabin, Yitzhak
    [J]. MACROMOLECULES, 2008, 41 (09) : 3267 - 3275
  • [3] Numerical study of microphase separation in gels and random media
    Uchida, N
    [J]. PHYSICS LETTERS A, 2004, 328 (2-3) : 201 - 206
  • [4] Microphase separation transition for polyelectrolyte gels in poor solvents
    Zeldovich, KB
    Dormidontova, EE
    Khokhlov, AR
    Vilgis, TA
    [J]. JOURNAL DE PHYSIQUE II, 1997, 7 (04): : 627 - 635
  • [5] AN APPROACH TO ARTIFICIAL MUSCLE USING POLYMER GELS FORMED BY MICROPHASE SEPARATION
    SUZUKI, M
    HIRASA, O
    [J]. ADVANCES IN POLYMER SCIENCE, 1993, 110 : 241 - 261
  • [6] Microphase separation in weakly charged annealed gels and associating polyelectrolyte solutions
    Kudlay, AN
    Erukhimovich, IY
    Khokhlov, AR
    [J]. MACROMOLECULES, 2000, 33 (15) : 5644 - 5654
  • [7] Scattering profiles of charged gels: Frozen inhomogeneities, thermal fluctuations, and microphase separation
    Rabin, Y
    Panyukov, S
    [J]. MACROMOLECULES, 1997, 30 (02) : 301 - 312
  • [8] Structure development of resorcinol-formaldehyde gels: Microphase separation or colloid aggregation
    Gommes, Cedric J.
    Roberts, Anthony P.
    [J]. PHYSICAL REVIEW E, 2008, 77 (04)
  • [9] Microphase separation of PEG modified urethane acrylate and the swelling behavior of its gels
    Kim, JY
    Suh, KD
    [J]. COLLOID AND POLYMER SCIENCE, 1996, 274 (11) : 1025 - 1032
  • [10] Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent
    Armstrong, Daniel P.
    Mineart, Kenneth P.
    Lee, Byeongdu
    Spontak, Richard J.
    [J]. ACS MACRO LETTERS, 2016, 5 (11): : 1273 - 1277