Error bounds of Lanczos approach for trust-region subproblem

被引:6
|
作者
Zhang, Leihong [1 ,2 ]
Yang, Weihong [3 ]
Shen, Chungen [4 ]
Feng, Jiang [1 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[2] Shanghai Univ Finance & Econ, Shanghai Key Lab Financial Informat Technol, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[4] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Trust-region method; trust-region subproblem (TRS); Lanczos method; Steihaug-Toint conjugate-gradient iteration; error bound; CONJUGATE-GRADIENT METHOD; OPTIMIZATION; MINIMIZATION; CONVERGENCE;
D O I
10.1007/s11464-018-0687-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Because of its vital role of the trust-region subproblem (TRS) in various applications, for example, in optimization and in ill-posed problems, there are several factorization-free algorithms for solving the large-scale sparse TRS. The truncated Lanczos approach proposed by N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint [SIAM J. Optim., 1999, 9: 504-525] is a natural extension of the classical Lanczos method for the symmetric linear system and eigenvalue problem and, indeed follows the classical Rayleigh-Ritz procedure for eigenvalue computations. It consists of 1) projecting the original TRS to the Krylov subspaces to yield smaller size TRS's and then 2) solving the resulted TRS's to get the approximates of the original TRS. This paper presents a posterior error bounds for both the global optimal value and the optimal solution between the original TRS and their projected counterparts. Our error bounds mainly rely on the factors from the Lanczos process as well as the data of the original TRS and, could be helpful in designing certain stopping criteria for the truncated Lanczos approach.
引用
收藏
页码:459 / 481
页数:23
相关论文
共 50 条
  • [1] Error bounds of Lanczos approach for trust-region subproblem
    Leihong Zhang
    Weihong Yang
    Chungen Shen
    Jiang Feng
    [J]. Frontiers of Mathematics in China, 2018, 13 : 459 - 481
  • [2] THE CONVERGENCE OF THE GENERALIZED LANCZOS TRUST-REGION METHOD FOR THE TRUST-REGION SUBPROBLEM
    Jia, Zhongxiao
    Wang, Fa
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 887 - 914
  • [3] A NESTED LANCZOS METHOD FOR THE TRUST-REGION SUBPROBLEM
    Zhang, Lei-Hong
    Shen, Chungen
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2005 - A2032
  • [4] Refined bounds on the convergence of block Lanczos method for extended trust-region subproblem
    Feng, Bo
    Wu, Gang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 388 - 402
  • [5] A BLOCK LANCZOS METHOD FOR THE EXTENDED TRUST-REGION SUBPROBLEM
    Song, Liqiang
    Yang, Wei Hong
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) : 571 - 594
  • [6] Solving the trust-region subproblem using the Lanczos method
    Gould, NIM
    Lucidi, S
    Roma, M
    Toint, PL
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (02) : 504 - 525
  • [7] Convergence of the block Lanczos method for the trust-region subproblem in the hard case
    Feng, Bo
    Wu, Gang
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (05)
  • [8] A multilevel algorithm for solving the trust-region subproblem
    Toint, Philippe L.
    Tomanos, D.
    Weber-Mendonca, M.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (02): : 299 - 311
  • [9] ON THE GENERALIZED LANCZOS TRUST-REGION METHOD
    Zhang, Lei-Hong
    Shen, Chungen
    Li, Ren-Cang
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 2110 - 2142
  • [10] Behavior of DCA sequences for solving the trust-region subproblem
    Hoai An Le Thi
    Tao Pham Dinh
    Nguyen Dong Yen
    [J]. Journal of Global Optimization, 2012, 53 : 317 - 329