On discovering "potentially useful" patterns from databases

被引:0
|
作者
Xie, Ying [1 ]
Johnsten, Tom [2 ]
Raghavan, Vijay V. [3 ]
Ramachandran, K. [3 ]
机构
[1] Kennesaw State Univ, Dept Comp Sci & Informat Syst, 1000 Chastain Rd, Kennesaw, GA 30144 USA
[2] Univ South Alabam, Sch Informat & Comp Sci, Mobile, AL USA
[3] Univ Louisian, Ctr Adv & Comp Studies, Lafayette, LA USA
关键词
potentially useful patterns; KDD; data mining; logic foundation; DAPUP;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As is generally accepted, the most important feature that a KDD system must possess is the ability to discover patterns that are "potentially useful". In order to allow KDD systems to make potentially useful judgments, we give formal definitions of "potential usefulness" by completely staying within the realms of the expressiveness provided by Bacchus' Probabilistic Logic Language. Furthermore, a tractable algorithm is proposed that is capable of discovering all potentially useful patterns from databases, given limited accessible information.
引用
收藏
页码:494 / +
页数:2
相关论文
共 50 条
  • [1] Discovering useful useful patterns from multiple instance data
    Luna, J. M.
    Cano, A.
    Sakalauskas, V.
    Ventura, S.
    [J]. INFORMATION SCIENCES, 2016, 357 : 23 - 38
  • [2] Discovering consensus patterns in biological databases
    ElTabakh, Mohamed Y.
    Aref, Walid G.
    Ouzzani, Mourad
    Ali, Mohamed H.
    [J]. DATA MINING AND BIOINFORMATICS, 2006, 4316 : 170 - +
  • [3] Fast algorithm to discovering sequential patterns from large databases
    Hu Huirong
    [J]. PROCEEDINGS OF THE 24TH CHINESE CONTROL CONFERENCE, VOLS 1 AND 2, 2005, : 1352 - 1355
  • [4] Discovering relational patterns across multiple databases
    Zhu, Xingquan
    Wu, Xindong
    [J]. 2007 IEEE 23RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2007, : 701 - +
  • [5] Discovering useful and understandable patterns in manufacturing data
    Last, M
    Kandel, A
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2004, 49 (3-4) : 137 - 152
  • [6] An efficient tool for discovering simple combinatorial patterns from large text databases
    Arimura, H
    Wataki, A
    Fujino, R
    Shimozono, S
    Arikawa, S
    [J]. DISCOVERY SCIENCE, 1998, 1532 : 393 - 394
  • [7] Discovering sequential patterns from non-uniform databases (extended abstract)
    Dang, D
    Wang, XS
    [J]. WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2000, 1846 : 139 - 144
  • [8] Discovering frequent structured patterns from string databases: An application to biological sequences
    Palopoli, L
    Terracina, G
    [J]. DISCOVERY SCIENCE, PROCEEDINGS, 2002, 2534 : 34 - 46
  • [9] Negative Itemset Tree for Discovering Rare Patterns with Periodicity from Static Databases
    Jyothi Upadhya, K.
    Bolisetty, Thanishka
    Rao, B. Dinesh
    Geetha, M.
    [J]. Engineering Letters, 2023, 31 (03) : 882 - 895
  • [10] Discovering Partial Periodic Spatial Patterns in Spatiotemporal Databases
    Kiran, R. Uday
    Saideep, C.
    Zettsu, Koji
    Toyoda, Masashi
    Kitsuregawa, Masaru
    Reddy, P. Krishna
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 233 - 238