The observer design for lipschitz Nonlinear systems based on LMI

被引:0
|
作者
Zhu, Fanglai [1 ]
机构
[1] Guilin Univ Elect Technol, Dept Comp, Guilin City 541004, Guangxi Prov, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the design methods of full-order and reduced-order observers for Lipschitz nonlinear systems. Under the assumption that a LMI is feasible, we point out there exists a full-order observer. By a way of coordinate transformation, we also put forward a design approach of reduced-order observer under the some assumption and the gain matrix of reduced-order observer is based on the solution of the LMI. The developed theory is used successfully in the design of an observer for a flexible joint robotic system.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 50 条
  • [1] The observer design for lipschitz nonlinear systems based on LMI
    Zhu, Fanglai
    [J]. 2006 1st IEEE Conference on Industrial Electronics and Applications, Vols 1-3, 2006, : 802 - 807
  • [2] Nonlinear Unknown Input Observer Design by LMI for Lipschitz Nonlinear Systems
    Shen, Zhong-yu
    Zhao, Jin
    Xu, Jie
    Gu, Xing-sheng
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3450 - 3454
  • [3] A New LMI Based H∞ Observer Design Method for Lipschitz Nonlinear Systems
    Zemouche, A.
    Rajamani, R.
    Trinh, H.
    Zasadzinski, M.
    [J]. 2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2011 - 2016
  • [4] LMI-based Observer Design for One-sided Lipschitz Nonlinear Systems
    Zhang Wei
    Liang Yan
    Su Hou-Sheng
    Han Zheng-Zhi
    [J]. 2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 256 - 260
  • [5] LMI-Based H∞ Observer Design for Nonlinear Lipschitz System
    Mohite, S.
    Alma, M.
    Zemouche, A.
    Haddad, M.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 6745 - 6750
  • [6] A Nonlinear Adaptive Resilient Observer Design for a Class of Lipschitz Systems Using LMI
    Mahdi Pourgholi
    Vahid Johari Majd
    [J]. Circuits, Systems, and Signal Processing, 2011, 30 : 1401 - 1415
  • [7] A Nonlinear Adaptive Resilient Observer Design for a Class of Lipschitz Systems Using LMI
    Pourgholi, Mahdi
    Majd, Vahid Johari
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2011, 30 (06) : 1401 - 1415
  • [8] H∞ Circle Criterion Observer Design for Lipschitz Nonlinear Systems with Enhanced LMI Conditions
    Zemouche, A.
    Rajamani, R.
    Boulkroune, B.
    Rafaralahy, H.
    Zasadzinski, M.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 131 - 136
  • [9] Nonlinear Observer Design for Lipschitz Nonlinear Systems
    Song, Bongsob
    Hedrick, J. Karl
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 2578 - 2583
  • [10] OBSERVER DESIGN FOR LIPSCHITZ NONLINEAR SYSTEMS
    Ma, K.
    He, F.
    Yao, Y.
    [J]. CONTROL AND INTELLIGENT SYSTEMS, 2009, 37 (02)