Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index

被引:61
|
作者
Zhang, Xianfeng [1 ,2 ]
Zhu, Anning [1 ]
Xin, Xiuli [1 ]
Yang, Wenliang [1 ]
Zhang, Jiabao [1 ]
Ding, Shijie [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Fengqiu Agroecol Expt Stn, Nanjing 210008, Jiangsu, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Conservation tillage; Crop yield; Soil macroaggregation; Soil nutrient stock; Soil fertility; ORGANIC-MATTER DYNAMICS; NO-TILLAGE; CONVENTIONAL-TILLAGE; CONSERVATION TILLAGE; CARBON SEQUESTRATION; WEATHERED SOILS; TOTAL NITROGEN; LOAM SOIL; PHOSPHORUS; QUALITY;
D O I
10.1016/j.fcr.2018.02.025
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Conservation tillage has been gaining increasing recognition for its role in improving soil quality and maintaining agricultural sustainability. This is the first in a series of papers describing the impacts of reduced/no-tillage with and without residue based on the field experiment in the North China Plain. The experiment was established in 2006 on a sandy loam soil and involved a winter wheat-summer maize rotation system per year. The objective of this study was to investigate the impacts of different conservation tillage systems on crop yield and soil fertility that was quantified by a minimum data set and integrated index. Soil samples were collected since 2011, and the stocks of soil organic matter (SOM), total nitrogen (TN), alkali-hydrolyzale nitrogen (AN), total phosphorus (TP), available phosphorus (AP), total potassium (TIC) and available potassium (AK) were measured for each year as well as soil aggregates were fractionated for 2016. Compared to continuous tillage, the reduced/no-tillage, regardless of residue, significantly increased the macroaggregate mass and soil nutrient stocks at the 0-10 cm depth, while further improvements in these soil attributes apart from TIC were observed at the 0-10 and 10-20 cm depths for residue returning relative to residue removing. The accumulations of soil nutrients were closely related to soil macroaggregation. The path analysis revealed that TN was the most important soil attribute to directly determine wheat and maize yields while other soil attributes apart for TIC primarily made indirect contributions to the yields. The first two factors extracted using 8 soil attributes through factor analysis were selected as the integrated indicators for the minimum data set, and their integrated score was calculated to quantify soil fertility. It was found that reduced/no-tillage did not improved soil fertility at the 0-20 cm depth. Consequently, an average 6.9% decrease in wheat yield across all years was observed under no tillage while reduced tillage only increased the yield in the first two years in a periodic reduced tillage event. No significant difference was observed for the mean maize yield among the three tillage regimes averaged across all years and residue managements. Wheat and maize yields were significantly correlated with the integrated score for soil fertility, and thus significant increases in grain yields of wheat and maize were observed for residue returning. It can be concluded that grain yields of wheat and maize within a given residue management practice were not significantly higher for reduced/no-tillage than continuous tillage, regardless of the effects of tillage on aggregates and soil nutrients.
引用
收藏
页码:157 / 165
页数:9
相关论文
共 50 条
  • [1] Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain
    Mu, Xinyuan
    Zhao, Yali
    Liu, Kui
    Ji, Baoyi
    Guo, Haibin
    Xue, Zhiwei
    Li, Chaohai
    [J]. EUROPEAN JOURNAL OF AGRONOMY, 2016, 78 : 32 - 43
  • [2] Dynamics in soil organic carbon of wheat-maize dominant cropping system in the North China Plain under tillage and residue management
    Zhao, Xin
    Virk, Ahmad Latif
    Ma, Shou-Tian
    Kan, Zheng-Rong
    Qi, Jian-Ying
    Pu, Chao
    Yang, Xiao-Guang
    Zhang, Hai-Lin
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 265
  • [3] Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat-maize cropping system in the North China Plain
    Dikgwatlhe, Shadrack Batsile
    Chen, Zhong-Du
    Lal, Rattan
    Zhang, Hai-Lin
    Chen, Fu
    [J]. SOIL & TILLAGE RESEARCH, 2014, 144 : 110 - 118
  • [4] Greenhouse gas emissions from the wheat-maize cropping system under different tillage and crop residue management practices in the North China Plain
    Pu, Chao
    Chen, Jin-Sai
    Wang, Hao-Di
    Virk, Ahmad Latif
    Zhao, Xin
    Zhang, Hai-Lin
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 819
  • [5] Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat-Maize Double Cropping System
    Zhang, Jin
    Wu, Lan-Fang
    [J]. AGRICULTURE-BASEL, 2021, 11 (03):
  • [6] Soil properties and crop yields after 11 years of no tillage farming in wheat-maize cropping system in North China Plain
    He Jin
    Li Hongwen
    Rasaily, Rabi G.
    Wang Qingjie
    Cai Guohua
    Su Yanbo
    Qiao Xiaodong
    Liu Lijin
    [J]. SOIL & TILLAGE RESEARCH, 2011, 113 (01): : 48 - 54
  • [7] Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system
    Xu, Jing
    Han, Huifang
    Ning, Tangyuan
    Li, Zengjia
    Lal, Rattan
    [J]. FIELD CROPS RESEARCH, 2019, 233 : 33 - 40
  • [8] Trends of Yield and Soil Fertility in a Long-Term Wheat-Maize System
    Yang Xue-yun
    Sun Ben-hua
    Zhang Shu-lan
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2014, 13 (02) : 402 - 414
  • [9] Trends of Yield and Soil Fertility in a Long-Term Wheat-Maize System
    YANG Xue-yun
    SUN Ben-hua
    ZHANG Shu-lan
    [J]. Journal of Integrative Agriculture, 2014, 13 (02) : 402 - 414
  • [10] Yield and Potassium Balance in a Wheat-Maize Cropping System of the North China Plain
    He, Chun-e
    Ouyang, Zhu
    Tian, Zhen-rong
    Schaffer, Harwood D.
    [J]. AGRONOMY JOURNAL, 2012, 104 (04) : 1016 - 1022