Echo state network-based spatio-temporal model for solar irradiance estimation

被引:5
|
作者
Li, Qian [1 ,2 ]
Wu, Zhou [1 ,2 ]
Ling, Rui [2 ]
Tan, Mi [2 ]
机构
[1] Minist Educ, Key Lab Complex Syst Safety & Control, Beijing, Peoples R China
[2] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Echo state network; Spatio-temporal; Solar irradiation forecast; NEURAL-NETWORK; PREDICTION; POWER;
D O I
10.1016/j.egypro.2019.01.868
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, echo state network-based spatio-temporal (STESN) model is proposed to predict the solar irradiance of a given target station, depending on the historical data of its surrounding sites. Hourly solar irradiance datasets for the whole year 2017, obtained from California Irrigation Management Information System (CIMIS) at eight different stations are used. Comparison studies show that SPESN could achieve more accurate prediction, compared with the conventional persistence (PSS) benchmark model. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:3808 / 3813
页数:6
相关论文
共 50 条
  • [1] A semiparametric spatio-temporal model for solar irradiance data
    Patrick, Joshua D.
    Harvill, Jane L.
    Hansen, Clifford W.
    [J]. RENEWABLE ENERGY, 2016, 87 : 15 - 30
  • [2] Spatio-temporal modeling with enhanced flexibility and robustness of solar irradiance prediction: A chain-structure echo state network approach
    Li, Qian
    Wu, Zhou
    Zhang, Haijun
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 261
  • [3] Spatio-Temporal Interpolated Echo State Network for Meteorological Series Prediction
    Xu, Meiling
    Yang, Yuanzhe
    Han, Min
    Qiu, Tie
    Lin, Hongfei
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (06) : 1621 - 1634
  • [4] Spatio-Temporal Distributed Solar Irradiance and Temperature Forecasting
    Pathiravasam, Chirath
    Arunagirinathan, Paranietharan
    Jayawardene, Iroshani
    Venayagamoorthy, Ganesh K.
    Wang, Yongqiang
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [5] Radar Echo Extrapolation Model Based on Deep Spatio-Temporal Fusion Neural Network
    Fang, Wei
    Pang, Lin
    Yi, Wei-Nan
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (09): : 2526 - 2538
  • [6] A Graph Neural Network Based Deep Learning Predictor for Spatio-Temporal Group Solar Irradiance Forecasting
    Jiao, Xuan
    Li, Xingshuo
    Lin, Dingyi
    Xiao, Weidong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6142 - 6149
  • [7] Feature Selection on Spatio-Temporal Data for Solar Irradiance Forecasting
    Carranza-Garcia, Manuel
    Lara-Benitez, Pedro
    Maria Luna-Romera, Jose
    Riquelme, Jose C.
    [J]. 16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 654 - 664
  • [8] Adaptive Dictionary-Based Spatio-temporal Flow Estimation for Echo PIV
    Bodnariuc, Ecaterina
    Gurung, Arati
    Petra, Stefania
    Schnoerr, Christoph
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, EMMCVPR 2015, 2015, 8932 : 378 - 391
  • [9] An ensemble quadratic echo state network for non-linear spatio-temporal forecasting
    McDermott, Patrick L.
    Wikle, Christopher K.
    [J]. STAT, 2017, 6 (01): : 315 - 330
  • [10] A model for spatio-temporal network planning
    Nash, E
    James, P
    Parker, D
    [J]. COMPUTERS & GEOSCIENCES, 2005, 31 (02) : 135 - 143