bandwidth selection;
fit comparison test;
kernel smoother;
quasi-likelihood estimator;
D O I:
10.2307/3316106
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
A test is proposed for assessing the lack of fit of heteroscedastic nonlinear regression models that is based on comparison of nonparametric kernel and parametric fits. A data-driven method is proposed for bandwidth selection using the asymptotically optimal bandwidth of the parametric null model which leads to a test that has a limiting normal distribution under the null hypothesis and is consistent against any fixed alternative. The resulting test is applied to the problem of testing the lack of fit of a generalized linear model.
机构:
Univ Rennes, CNRS, Ensai, CREST UMR 9194, F-35000 Rennes, FranceUniv Rennes, CNRS, Ensai, CREST UMR 9194, F-35000 Rennes, France
Patilea, Valentin
Sanchez-Sellero, Cesar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Estadist Anal Matemat & Optimizac, Santiago De Compostela, SpainUniv Rennes, CNRS, Ensai, CREST UMR 9194, F-35000 Rennes, France