Multiscale modeling of heterogeneous magnetic materials

被引:5
|
作者
Bottauscio, Oriano [1 ]
Chiampi, Mario [2 ]
Manzin, Alessandra [1 ]
机构
[1] Ist Nazl Ric Metrol, I-10135 Turin, Italy
[2] Politecn Torino, Dipartimento Energia, I-10129 Turin, Italy
关键词
composite materials; soft ferrites; numerical simulation; multiscale problem; homogenization technique; FINITE-ELEMENT; ELECTROMAGNETIC PROPERTIES; COMPOSITE-MATERIALS; NUMERICAL-METHODS; HOMOGENIZATION;
D O I
10.1002/jnm.1937
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper analyzes and discusses some computational methods for the simulation of the electric and magnetic behavior versus frequency of heterogeneous soft magnetic materials (such as soft magnetic composites, soft ferrites, and polymer composites). All these media are characterized by a granular structure, with magnetic grains separated by high resistivity layers, so that the study involves phenomena occurring at both macroscopic (sample size) and microscopic scale (grain size). The main purpose of the analysis is the prediction of the effective magnetic and electric properties, and of the relative energy losses starting from the known properties of the constituents, as well as the extrapolation of the constituent parameters from the measured global properties of the heterogeneous medium (inverse problem). The adopted computational methodologies include both analytical mixing rules and numerical approaches on the basis of homogenization and multiscale methods. The paper reports some examples illustrating advantages and drawbacks of these techniques, giving also an outline of nonlinear media homogenization. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:373 / 384
页数:12
相关论文
共 50 条
  • [1] Probabilistic Multiscale Modeling of Fracture in Heterogeneous Materials and Structures
    Lepikhin, A. M.
    Makhutov, N. A.
    Shokin, Yu, I
    [J]. INORGANIC MATERIALS, 2021, 57 (15) : 1511 - 1518
  • [2] Probabilistic Multiscale Modeling of Fracture in Heterogeneous Materials and Structures
    A. M. Lepikhin
    N. A. Makhutov
    Yu. I. Shokin
    [J]. Inorganic Materials, 2021, 57 : 1511 - 1518
  • [3] A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
    Matous, Karel
    Geers, Marc G. D.
    Kouznetsova, Varvara G.
    Gillman, Andrew
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 192 - 220
  • [4] Special Section on Stochastic Multiscale Modeling of Heterogeneous Materials and Structures
    Stefanou, George
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING, 2019, 5 (03):
  • [5] SPECIAL ISSUE MULTISCALE MODELING AND UNCERTAINTY QUANTIFICATION OF HETEROGENEOUS MATERIALS
    Stefanou, George
    [J]. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2011, 9 (04) : 363 - 364
  • [6] Towards multiscale modeling of magnetic materials: Simulations of FePt
    Kazantseva, N.
    Hinzke, D.
    Nowak, U.
    Chantrell, R. W.
    Atxitia, U.
    Chubykalo-Fesenko, O.
    [J]. PHYSICAL REVIEW B, 2008, 77 (18)
  • [7] Efficient multiscale modeling of heterogeneous materials using deep neural networks
    Fadi Aldakheel
    Elsayed S. Elsayed
    Tarek I. Zohdi
    Peter Wriggers
    [J]. Computational Mechanics, 2023, 72 : 155 - 171
  • [8] Multiscale stochastic finite element modeling of random elastic heterogeneous materials
    Lihua Shen
    X. Frank Xu
    [J]. Computational Mechanics, 2010, 45 : 607 - 621
  • [9] Multiscale stochastic finite element modeling of random elastic heterogeneous materials
    Shen, Lihua
    Xu, X. Frank
    [J]. COMPUTATIONAL MECHANICS, 2010, 45 (06) : 607 - 621
  • [10] SPECIAL ISSUE MULTISCALE MODELING AND UNCERTAINTY QUANTIFICATION OF HETEROGENEOUS MATERIALS PREFACE
    Stefanou, George
    [J]. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2011, 9 (03) : VII - VIII