On construction of multivariate wavelet frames

被引:22
|
作者
Skopina, M. [1 ]
机构
[1] St Petersburg State Univ, Dept Appl Math & Control Proc, St Petersburg 198504, Russia
基金
俄罗斯基础研究基金会;
关键词
Wavelet frame; Matrix dilation; Approximation order; Vanishing moments; Unitary Extension Principle; LAURENT POLYNOMIALS; REFINABLE FUNCTIONS;
D O I
10.1016/j.acha.2008.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Wavelet frames with matrix dilation are Studied. We found a necessary condition and a sufficient condition under which a given pair of refinable functions generates dual wavelet systems with a given number of vanishing moments. Explicit methods for construction Of Compactly Supported dual and tight frames with vanishing moments are suggested. Examples of tight frames with symmetric/antisymmetric wavelet functions found by means of this method are presented. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 72
页数:18
相关论文
共 50 条
  • [1] On construction of multivariate Parseval wavelet frames
    Skopina, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 301 : 1 - 11
  • [2] Construction of multivariate compactly supported tight wavelet frames
    Lai, Ming-Jun
    Stoeckler, Joachim
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (03) : 324 - 348
  • [3] The construction of multivariate periodic wavelet bi-frames
    Li, Yun-Zhang
    Jia, Hui-Fang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 852 - 865
  • [4] On construction of periodic wavelet frames
    Pavel Andrianov
    Maria Skopina
    [J]. European Journal of Mathematics, 2019, 5 : 241 - 249
  • [5] On construction of periodic wavelet frames
    Andrianov, Pavel
    Skopina, Maria
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2019, 5 (01) : 241 - 249
  • [6] An Algebraic Perspective on Multivariate Tight Wavelet Frames
    Charina, Maria
    Putinar, Mihai
    Scheiderer, Claus
    Stoeckler, Joachim
    [J]. CONSTRUCTIVE APPROXIMATION, 2013, 38 (02) : 253 - 276
  • [7] An Algebraic Perspective on Multivariate Tight Wavelet Frames
    Maria Charina
    Mihai Putinar
    Claus Scheiderer
    Joachim Stöckler
    [J]. Constructive Approximation, 2013, 38 : 253 - 276
  • [8] Construction of approximate dual wavelet frames
    Feichtinger, Hans G.
    Onchis, Darian M.
    Wiesmeyr, Christoph
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (01) : 273 - 282
  • [9] Construction of approximate dual wavelet frames
    Hans G. Feichtinger
    Darian M. Onchis
    Christoph Wiesmeyr
    [J]. Advances in Computational Mathematics, 2014, 40 : 273 - 282
  • [10] Construction for a class of smooth wavelet tight frames
    Lizhong Peng
    Haihui Wang
    [J]. Science in China Series F: Information Sciences, 2003, 46 : 445 - 458