Geodesics in a manifold with Heisenberg group as boundary

被引:1
|
作者
Ni, YL [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
关键词
Heisenberg group; Hamiltonian mechanics; geodesic;
D O I
10.4153/CJM-2004-026-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Heisenberg group is considered as the boundary of a manifold. A class of hypersurfaces in this manifold can be regarded as copies of the Heisenberg group. The properties of geodesics in the interior and on the hypersurfaces are worked out in detail. These properties are strongly related to those of the Heisenberg group.
引用
收藏
页码:566 / 589
页数:24
相关论文
共 50 条
  • [1] Geodesics in the Heisenberg Group
    Hajlasz, Piotr
    Zimmerman, Scott
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 325 - 337
  • [2] Infinite Geodesics in the Discrete Heisenberg Group
    Vershik A.M.
    Malyutin A.V.
    [J]. Journal of Mathematical Sciences, 2018, 232 (2) : 121 - 128
  • [3] GEODESICS IN THE HEISENBERG GROUP: AN ELEMENTARY APPROACH
    Noskov, G. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 177 - 188
  • [4] The heat kernel and Green's function on a manifold with Heisenberg group as boundary
    Ni, YL
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (03): : 590 - 611
  • [5] Geodesics in the Heisenberg group Hn with a Lorentzian metric
    Tiren Huang
    Xiaoping Yang
    [J]. Journal of Dynamical and Control Systems, 2012, 18 : 479 - 498
  • [6] Absolute continuity of Wasserstein geodesics in the Heisenberg group
    Figalli, A.
    Juillet, N.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) : 133 - 141
  • [7] Asymptotics of the Number of Geodesics in the Discrete Heisenberg Group
    Vershik A.M.
    Malyutin A.V.
    [J]. Journal of Mathematical Sciences, 2019, 240 (5) : 525 - 534
  • [8] Sub-Riemannian Geodesics on the Multidimensional Heisenberg Group
    Panzhenskii V.I.
    Surina O.P.
    [J]. Journal of Mathematical Sciences, 2023, 276 (4) : 541 - 551
  • [9] Isometries, Geodesics and Jacobi Fields of Lorentzian Heisenberg Group
    Batat, Wafaa
    Rahmani, Salima
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (03) : 411 - 430
  • [10] Isometries, Geodesics and Jacobi Fields of Lorentzian Heisenberg Group
    Wafaa Batat
    Salima Rahmani
    [J]. Mediterranean Journal of Mathematics, 2011, 8 : 411 - 430