ON TYPICAL REPRESENTATIONS FOR DEPTH-ZERO COMPONENTS OF SPLIT CLASSICAL GROUPS

被引:0
|
作者
Nadimpalli, Santosh [1 ]
Mondal, Amiya Kumar [2 ]
机构
[1] Radboud Univ Nijmegen, IMAPP, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[2] Bar Ilan Univ, Dept Math, IL-529002 Ramat Gan, Israel
来源
REPRESENTATION THEORY | 2019年 / 23卷
基金
以色列科学基金会;
关键词
Representation theory of p-adic groups; theory of types; inertial equivalence; Bernstein decomposition; typical representations; depth-zero inertial classes; classical groups; HECKE ALGEBRAS; SUPERCUSPIDAL REPRESENTATIONS; PRINCIPAL SERIES; SEMISIMPLE TYPES; UNICITY;
D O I
10.1090/ert/532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a split classical group over a non-Archimedean local field F with the cardinality of the residue field q(F) > 5. Let M be the group of F-points of a Levi factor of a proper F-parabolic subgroup of G. Let [M,sigma(M)](M) be an inertial class such that sigma(M) contains a depth-zero Moy-Prasad type of the form (K-M, tau(M) ), where K-M is a hyperspecial maximal compact subgroup of M. Let K be a hyperspecial maximal compact subgroup of G(F) such that K contains K-M. In this article, we classify s-typical representations of K. In particular, we show that the s-typical representations of K are precisely the irreducible subrepresentations of ind(J)(K) lambda, where (J, lambda) is a level-zero G-cover of (K &AND M; tau(M)).
引用
收藏
页码:249 / 277
页数:29
相关论文
共 50 条