Quantum actions on discrete quantum spaces and a generalization of Clifford's theory of representations

被引:12
|
作者
De Commer, Kenny [1 ]
Kasprzak, Pawe [2 ]
Skalski, Adam [3 ]
Soltan, Piotr M. [2 ]
机构
[1] Vrije Univ Brussel, Vakgrp Wiskunde, Brussels, Belgium
[2] Univ Warsaw, Fac Phys, Dept Math Methods Phys, Warsaw, Poland
[3] Polish Acad Sci, Inst Math, Warsaw, Poland
基金
欧盟地平线“2020”;
关键词
COMPACT MATRIX PSEUDOGROUPS; SUBGROUPS; SYMMETRIES;
D O I
10.1007/s11856-018-1709-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To any action of a compact quantum group on a von Neumann algebra which is a direct sum of factors we associate an equivalence relation corresponding to the partition of a space into orbits of the action. We show that in case all factors are finite-dimensional (i.e., when the action is on a discrete quantum space) the relation has finite orbits. We then apply this to generalize the classical theory of Clifford, concerning the restrictions of representations to normal subgroups, to the framework of quantum subgroups of discrete quantum groups, itself extending the context of closed normal quantum subgroups of compact quantum groups. Finally, a link is made between our equivalence relation in question and another equivalence relation defined by R. Vergnioux.
引用
收藏
页码:475 / 503
页数:29
相关论文
共 50 条
  • [1] Quantum actions on discrete quantum spaces and a generalization of Clifford’s theory of representations
    Kenny De Commer
    Paweł Kasprzak
    Adam Skalski
    Piotr M. Sołtan
    [J]. Israel Journal of Mathematics, 2018, 226 : 475 - 503
  • [2] Amenable fusion algebraic actions of discrete quantum groups on compact quantum spaces
    Xiao Chen
    Debashish Goswami
    Huichi Huang
    [J]. Banach Journal of Mathematical Analysis, 2022, 16
  • [3] Amenable fusion algebraic actions of discrete quantum groups on compact quantum spaces
    Chen, Xiao
    Goswami, Debashish
    Huang, Huichi
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)
  • [4] Peirce, Clifford, and Quantum Theory
    R. G. Beil
    K. L. Ketner
    [J]. International Journal of Theoretical Physics, 2003, 42 : 1957 - 1972
  • [5] Peirce, Clifford, and quantum theory
    Beil, RG
    Ketner, KL
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (09) : 1957 - 1972
  • [6] Quantum Clifford algebras from spinor representations
    Bautista, R
    Criscuolo, A
    Durdevic, M
    Rosenbaum, M
    Vergara, JD
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (11) : 5747 - 5775
  • [7] Actions of quantum linear spaces on quantum algebras
    Cline, Zachary
    Gaddis, Jason
    [J]. JOURNAL OF ALGEBRA, 2020, 556 : 246 - 286
  • [8] ON QUANTUM SEMIGROUP ACTIONS ON FINITE QUANTUM SPACES
    Soltan, Piotr Mikolaj
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (03) : 503 - 509
  • [9] Quantum Clifford Hopf gebra for quantum field theory
    Bertfried Fauser
    [J]. Advances in Applied Clifford Algebras, 2003, 13 (2) : 115 - 125
  • [10] DISCRETE REPRESENTATIONS FOR QUANTUM DYNAMICS
    LIGHT, JC
    WEIDE, K
    SHIN, S
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 368 - PHYS