A multivariate robust parameter optimization approach based on Principal Component Analysis with combined arrays

被引:23
|
作者
de Paiva, Anderson Paulo [1 ]
Gomes, Jose Henrique F. [1 ]
Peruchi, Rogerio Santana [1 ]
Leme, Rafael Coradi [1 ]
Balestrassi, Pedro Paulo [1 ]
机构
[1] Univ Fed Itajuba, Inst Ind Engn & Management, BR-37500188 Itajuba, MG, Brazil
关键词
Multiple objective programming; Robust Parameter Design (RPD); Multivariate Mean Square Error (MMSE); Principal Component Analysis (PCA); MEAN-SQUARE ERROR; DESIGN OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; TAGUCHI; BIAS; VARIANCE; CRITERIA;
D O I
10.1016/j.cie.2014.05.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Today's modern industries have found a wide array of applications for optimization methods based on modeling with Robust Parameter Designs (RPD). Methods of carrying out RPD have thus multiplied. However, little attention has been given to the multiobjective optimization of correlated multiple responses using response surface with combined arrays. Considering this gap, this paper presents a multiobjective hybrid approach combining response surface methodology (RSM) with Principal Component Analysis (PCA) to study a multi-response dataset with an embedded noise factor, using a DOE combined array. How this approach differs from the most common approaches to RPD is that it derives the mean and variance equations using the propagation of error principle (POE). This comes from a control-noise response surface equation written with the most significant principal component scores that can be used to replace the original correlated dataset. Besides the dimensional reduction, this multiobjective programming approach has the benefit of considering the correlation among the multiple responses while generating convex Pareto frontiers to mean square error (MSE) functions. To demonstrate the procedure of the proposed approach, we used a bivariate case of AISI 52100 hardened steel turning employing wiper mixed ceramic tools. Theoretical and experimental results are convergent and confirm the effectiveness of the proposed approach. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:186 / 198
页数:13
相关论文
共 50 条
  • [1] Robust parameter design: Optimization of combined array approach with orthogonal arrays
    Evangelaras, H.
    Kolaiti, E.
    Koukouvinos, C.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (10) : 3698 - 3709
  • [2] A Bayesian Approach to the Analysis of Split-Plot Combined and Product Arrays and Optimization in Robust Parameter Design
    Robinson, Timothy J.
    Pintar, Adam L.
    Anderson-Cook, Christine M.
    Hamada, Michael S.
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2012, 44 (04) : 304 - 320
  • [3] DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH PRINCIPAL COMPONENT ANALYSIS
    Cheng, Jianqiang
    Chen, Richard Li-Yang
    Najm, Habib N.
    Pinar, Ali
    Safta, Cosmin
    Watson, Jean-Paul
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) : 1817 - 1841
  • [4] Robust Principal Component Analysis: An IRLS Approach
    Polyak, Boris T.
    Khlebnikov, Mikhail V.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 2762 - 2767
  • [5] Robust principal component analysis of electromagnetic arrays with missing data
    Smirnov, M. Yu
    Egbert, G. D.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (03) : 1423 - 1438
  • [6] MULTIVARIATE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS: A NORMALIZATION APPROACH
    Chiou, Jeng-Min
    Chen, Yu-Ting
    Yang, Ya-Fang
    [J]. STATISTICA SINICA, 2014, 24 (04) : 1571 - 1596
  • [7] Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis
    Yang Yizhong
    Wang Pengfei
    Hu Xionglou
    Wu Nengju
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (06) : 1309 - 1315
  • [8] A Multistage Semianticipativity Model for UC via Distributionally Robust Optimization Combined With Principal Component Analysis
    Yang, Linfeng
    Li, Wei
    Zhang, Cuo
    Liu, Hui
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 2632 - 2643
  • [9] Robust Principal Component Analysis: A Median of Means Approach
    Paul, Debolina
    Chakraborty, Saptarshi
    Das, Swagatam
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 13
  • [10] ROBPCA: A new approach to robust principal component analysis
    Hubert, M
    Rousseeuw, PJ
    Vanden Branden, K
    [J]. TECHNOMETRICS, 2005, 47 (01) : 64 - 79