A 'No Panacea Theorem' for multiple classifier combination

被引:0
|
作者
Hu, Roland [1 ]
Damper, R. I. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the 'No Panacea Theorem' for classifier combination in the two-classifier two-class case. It states that if the combination function is continuous and diverse, there exists a situation in which the combination algorithm will always give very bad performance. Thus, there is no optimal algorithm, suitable in all situations. From this theorem, we see that the probability density functions (pdf's) play an important role in the performance of combination algorithms, so studying the pdf's becomes the first step in finding a good algorithm.
引用
收藏
页码:1250 / +
页数:2
相关论文
共 50 条
  • [1] A 'No Panacea Theorem' for classifier combination
    Hu, Roland
    Damper, R. I.
    PATTERN RECOGNITION, 2008, 41 (08) : 2665 - 2673
  • [2] DECISION COMBINATION IN MULTIPLE CLASSIFIER SYSTEMS
    HO, TK
    HULL, JJ
    SRIHARI, SN
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (01) : 66 - 75
  • [3] An evolutionary algorithm for classifier and combination rule selection in multiple classifier systems
    Sirlantzis, K
    Fairhurst, MC
    Guest, RM
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 771 - 774
  • [4] MULTIPLE CLASSIFIER COMBINATION FOR RECOGNITION OF WHEAT LEAF DISEASES
    Tian, Yuan
    Zhao, Chunjiang
    Lu, Shenglian
    Guo, Xinyu
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2011, 17 (05): : 519 - 529
  • [5] Multiple classifier combination methodologies for different output levels
    Suen, CY
    Lam, L
    MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 : 52 - 66
  • [6] Linear classifier combination via multiple potential functions
    Trajdos, Pawel
    Burduk, Robert
    PATTERN RECOGNITION, 2021, 111
  • [7] Face recognition based on the combination method of multiple classifier
    Libo, Yang
    Hao, Chang
    International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9 (04) : 151 - 164
  • [8] Combination of Multiple Classifier Using Feature Space Partitioning
    Xia Yingju
    Hou Cuiqin
    Sun Jun
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 612 - 624
  • [9] An Improved Hyperspectral Mapping Using Multiple Classifier Combination
    Wen, Xingping
    Hu, Guangdao
    Yang, Xiaofeng
    2008 IEEE INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2008, : 949 - +
  • [10] Multiple Classifier Combination for Hyperspectral Remote Sensing Image Classification
    Du, Peijun
    Zhang, Wei
    Sun, Hao
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 52 - 61