Free resolutions of simplicial posets

被引:17
|
作者
Duval, AM
机构
[1] Department of Mathematical Sciences, University of Texas at El Paso, El Paso
关键词
D O I
10.1006/jabr.1996.6855
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A simplicial poset, a poset with a minimal element and whose every interval is a Boolean algebra, is a generalization of a simplicial complex. Stanley defined a ring A, associated with a simplicial poset P that generalizes the face-ring of a simplicial complex. If V is the set of vertices of P, then A(p) is a k[V]-module; we find the Betti polynomials of a free resolution of A(p), and the local cohomology modules of A(p), generalizing Hochster's corresponding results for simplicial complexes. The proofs involve splitting certain chain or cochain complexes more finely than in the simplicial complex case. Corollaries are that the depth of A(p) is a topological invariant, and that the depth may be computed in terms of the Cohen-Macaulayness of skeleta of P, generalizing results of Munkres and Hibi. (C) 1997 Academic Press.
引用
收藏
页码:363 / 399
页数:37
相关论文
共 50 条
  • [1] Multigraded minimal free resolutions of simplicial subclutters
    Bigdeli, Mina
    Pour, Ali Akbar Yazdan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
  • [2] On simplicial resolutions of groups
    Daniele Ettore Otera
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [3] On simplicial resolutions of groups
    Otera, Daniele Ettore
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [4] Torus graphs and simplicial posets
    Maeda, Hiroshi
    Masuda, Mikiya
    Panov, Taras
    [J]. ADVANCES IN MATHEMATICS, 2007, 212 (02) : 458 - 483
  • [5] Finite free resolutions and 1-skeletons of simplicial complexes
    Terai, N
    Hibi, T
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (01) : 89 - 93
  • [6] Finite Free Resolutions and 1-Skeletons of Simplicial Complexes
    Naoki Terai
    Takayuki Hibi
    [J]. Journal of Algebraic Combinatorics, 1997, 6 (1) : 89 - 93
  • [7] MINIMAL FREE RESOLUTIONS OF MONOMIAL IDEALS AND OF TORIC RINGS ARE SUPPORTED ON POSETS
    Clark, Timothy B. P.
    Tchernev, Alexandre B.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (06) : 3995 - 4027
  • [8] Resolutions of letterplace ideals of posets
    D'Ali, Alessio
    Floystad, Gunnar
    Nematbakhsh, Amin
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 45 (03) : 911 - 930
  • [9] Resolutions of letterplace ideals of posets
    Alessio D’Alì
    Gunnar Fløystad
    Amin Nematbakhsh
    [J]. Journal of Algebraic Combinatorics, 2017, 45 : 911 - 930
  • [10] ON SIMPLICIAL RESOLUTIONS OF FRAMED LINKS
    Lei, Fengchun
    Li, Fengling
    Wu, Jie
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (06) : 3075 - 3093