THE FINITE SECTION METHOD FOR DISSIPATIVE OPERATORS

被引:6
|
作者
Marletta, Marco [1 ]
Naboko, Sergey [2 ]
机构
[1] Cardiff Univ, Sch Math, Wales Inst Math & Computat Sci, Cardiff CF24 4AG, S Glam, Wales
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NZ, Kent, England
基金
俄罗斯基础研究基金会;
关键词
DIFFERENTIAL-OPERATORS; SPECTRAL POLLUTION; HAMILTONIAN-SYSTEMS; EIGENVALUES; GAPS;
D O I
10.1112/S0025579314000126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for self-adjoint Jacobi matrices and Schrodinger operators, perturbed by dissipative potentials in l(1)N / and L-1 (0, infinity) respectively, the finite section method does not omit any points of the spectrum. In the Schr " odinger case two different approaches are presented. Many aspects of the proofs can be expected to carry over to higher dimensions, particularly for absolutely continuous spectrum.
引用
收藏
页码:415 / 443
页数:29
相关论文
共 50 条