Weighted ensemble of algorithms for complex data clustering

被引:28
|
作者
Berikov, Vladimir [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Clustering; Classification; Weighted clustering ensemble; Latent variable model; Classification error bound;
D O I
10.1016/j.patrec.2013.11.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers a problem of clustering complex data composed from various structures. A collection of different algorithms is used for the analysis. The main idea is based on the assumption that each algorithm is "specialized" (as a rule, gives more accurate partition results) on particular types of structures. The degree of algorithm's "competence" is determined by usage of weights attributed to each pair of observations. Optimal weights are specified by the analysis of partial ensemble solutions with use of the proposed model of clustering ensemble. The efficiency of the suggested approach is demonstrated with Monte-Carlo modeling. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [1] Temporal Data Clustering via Weighted Clustering Ensemble with Different Representations
    Yang, Yun
    Chen, Ke
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (02) : 307 - 320
  • [2] GeoWaVe: geometric median clustering with weighted voting for ensemble clustering of cytometry data
    Burton, Ross J.
    Cuff, Simone M.
    Morgan, Matt P.
    Artemiou, Andreas
    Eberl, Matthias
    [J]. BIOINFORMATICS, 2023, 39 (01)
  • [3] Weighted clustering ensemble: A review
    Zhang, Mimi
    [J]. PATTERN RECOGNITION, 2022, 124
  • [4] Locally Weighted Ensemble Clustering
    Huang, Dong
    Wang, Chang-Dong
    Lai, Jian-Huang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (05) : 1460 - 1473
  • [5] Clustering ensemble by clustering selected weighted clusters
    Banerjee, Arko
    Nayak, Suvendu Chandan
    Panigrahi, Chhabi Rani
    Pati, Bibudhendu
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2024, 27 (02) : 159 - 166
  • [6] A SURVEY OF CLUSTERING ENSEMBLE ALGORITHMS
    Vega-Pons, Sandro
    Ruiz-Shulcloper, Jose
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (03) : 337 - 372
  • [7] Weighted Delta Factor Cluster Ensemble Algorithm for Categorical Data Clustering in Data Mining
    Sengottaian, Sarumathi
    Natesan, Shanthi
    Mathivanan, Sharmila
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2017, 14 (03) : 275 - 284
  • [8] Weighted-Object Ensemble Clustering
    Ren, Yazhou
    Domeniconi, Carlotta
    Zhang, Guoji
    Yu, Guoxian
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 627 - 636
  • [9] Ensemble of clustering algorithms for large datasets
    Pestunov I.A.
    Berikov V.B.
    Kulikova E.A.
    Rylov S.A.
    [J]. Optoelectronics, Instrumentation and Data Processing, 2011, 47 (3) : 245 - 252
  • [10] A new method for weighted ensemble clustering and coupled ensemble selection
    Banerjee, Arko
    Pujari, Arun K.
    Panigrahi, Chhabi Rani
    Pati, Bibudhendu
    Nayak, Suvendu Chandan
    Weng, Tien-Hsiung
    [J]. CONNECTION SCIENCE, 2021, 33 (03) : 623 - 644