Totally geodesic subgroups of diffeomorphisms

被引:7
|
作者
Haller, S
Teichmann, J
Vizman, C
机构
[1] Vienna Tech Univ, Inst Financial & Actuarial Math, A-1040 Vienna, Austria
[2] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[3] W Univ Timisoara, Dept Math, Timisoara 1900, Romania
关键词
groups of diffeomorphisms as manifolds; geodesic equations on infinite dimensional Lie groups;
D O I
10.1016/S0393-0440(01)00096-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the Riemannian manifolds for which the group of exact volume preserving diffeomorphisms is a totally geodesic subgroup of the group of volume preserving diffeomorphisms, considering right invariant L-2-metrics. The same is done for the subgroup of Hamiltonian diffeomorphisms as a subgroup of the group of symplectic diffeomorphisms in the Kahler case. These are special cases of totally geodesic subgroups of diffeomorphisms with Lie algebras big enough to detect the vanishing of a symmetric 2-tensor field. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:342 / 354
页数:13
相关论文
共 50 条
  • [1] On Euler-Arnold equations and totally geodesic subgroups
    Modin, Klas
    Perlmutter, Matthew
    Marsland, Stephen
    McLachlan, Robert
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1446 - 1461
  • [2] Plane Curves and Geodesic Diffeomorphisms
    D. A. Catalano
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2001, 71 : 77 - 79
  • [3] Plane curves and geodesic diffeomorphisms
    Catalano, DA
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2001, 71 (1): : 77 - 79
  • [4] Hierarchical Geodesic Models in Diffeomorphisms
    Singh, Nikhil
    Hinkle, Jacob
    Joshi, Sarang
    Fletcher, P. Thomas
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 117 (01) : 70 - 92
  • [5] Spacetime diffeomorphisms and the geodesic approximation
    Käppeli, J
    [J]. PROGRESS IN STRING, FIELD AND PARTICLE THEORY, 2003, 104 : 413 - 416
  • [6] GROUPS OF DIFFEOMORPHISMS AND THEIR SUBGROUPS
    OMORI, H
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) : 85 - 122
  • [7] Hierarchical Geodesic Models in Diffeomorphisms
    Nikhil Singh
    Jacob Hinkle
    Sarang Joshi
    P. Thomas Fletcher
    [J]. International Journal of Computer Vision, 2016, 117 : 70 - 92
  • [8] TOTALLY GEODESIC FOLIATIONS
    FERUS, D
    [J]. MATHEMATISCHE ANNALEN, 1970, 188 (04) : 313 - &
  • [9] TOTALLY GEODESIC FOLIATIONS
    JOHNSON, DL
    WHITT, LB
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1980, 15 (02) : 225 - 235
  • [10] TOTALLY GEODESIC FOLIATIONS
    CARRIERE, Y
    GHYS, E
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1981, 53 (03): : 427 - 432