On minimax identification of nonparametric autoregressive models

被引:2
|
作者
Delyon, B
Juditsky, A
机构
[1] Inst Rech Informat & Syst Aleatoires, F-35042 Rennes, France
[2] INRIA Rhone Alpes, F-38330 Montbonnot St Martin, France
关键词
D O I
10.1007/PL00008721
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of nonparametric identification for a multi-dimensional functional autoregression y(t) = f (y(t-1), ..., Yt-d) + e(t) On the basis of N observations of y(t). In the case when the unknown nonlinear function f belongs to the Barren class, we propose an estimation algorithm which provides approximations of f with expected L-2 accuracy O(N-1/4 In-1/4 N). We also show that this approximation rate cannot be significantly improved. The proposed algorithms are "computationally efficient" - the total number of elementary computations necessary to complete the estimate grows polynomially with N.
引用
收藏
页码:21 / 39
页数:19
相关论文
共 50 条
  • [1] On minimax identification of nonparametric autoregressive models
    Bernard Delyon
    Anatoli Juditsky
    [J]. Probability Theory and Related Fields, 2000, 116 : 21 - 39
  • [2] On nonergodicity for nonparametric autoregressive models
    Tang, Mingtian
    Wang, Yunyan
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [3] On nonergodicity for nonparametric autoregressive models
    Mingtian Tang
    Yunyan Wang
    [J]. Advances in Difference Equations, 2013
  • [4] Nonparametric identification for nonlinear autoregressive time series models: Convergence rates
    Lu, ZD
    Cheng, P
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (02) : 173 - 184
  • [5] Bayesian nonparametric vector autoregressive models
    Kalli, Maria
    Griffin, Jim E.
    [J]. JOURNAL OF ECONOMETRICS, 2018, 203 (02) : 267 - 282
  • [6] System identification using autoregressive Bayesian neural networks with nonparametric noise models
    Merkatas, Christos
    Sarkka, Simo
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (03) : 319 - 330
  • [7] A nonparametric test of conditional autoregressive heteroscedasticity for threshold autoregressive models
    Chen, M
    Chen, GM
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (04): : 649 - 666
  • [8] Nonparametric likelihood inference for general autoregressive models
    Bravo, Francesco
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2010, 19 (01): : 79 - 106
  • [9] Sequential Adaptive Estimators in Nonparametric Autoregressive Models
    Arkoun, Ouerdia
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2011, 30 (02): : 229 - 247
  • [10] Nonparametric likelihood inference for general autoregressive models
    Francesco Bravo
    [J]. Statistical Methods and Applications, 2010, 19 : 79 - 106