The Lagrange-Galerkin method for fluid-structure interaction problems

被引:0
|
作者
San Martin, Jorge [1 ,2 ]
Scheid, Jean-Francois [3 ]
Smaranda, Loredana [4 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, CNRS, UMR 2071, Santiago, Chile
[3] Univ Lorraine, Inst Elie Cartan Nancy UMR 7502, CNRS, INRIA, F-54506 Vandoeuvre Les Nancy, France
[4] Univ Pitesti, Dept Math & Comp Sci, Fac Math & Comp Sci, Pitesti 110040, Romania
来源
关键词
MOVING RIGID BODIES; CONVERGENCE; FLOW; SIMULATION; EQUATIONS; SYSTEM;
D O I
10.1186/1687-2770-2013-246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Lagrange-Galerkin scheme to approximate a two-dimensional fluid-structure interaction problem. The equations of the system are the Navier-Stokes equations in the fluid part, coupled with ordinary differential equations for the dynamics of the solid. We are interested in studying numerical schemes based on the use of the characteristics method for rigid and deformable solids. The schemes are based on a global weak formulation involving only terms defined on the whole fluid-solid domain. Convergence results are stated for both semi and fully discrete schemes. This article reviews known results for rigid solid along with some new results on deformable structure yet to be published.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The Lagrange-Galerkin method for fluid-structure interaction problems
    Jorge San Martín
    Jean-François Scheid
    Loredana Smaranda
    [J]. Boundary Value Problems, 2013
  • [2] SECOND-ORDER PURE LAGRANGE-GALERKIN METHODS FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    Benitez, Marta
    Bermudez, Alfredo
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B744 - B777
  • [3] DISCONTINUOUS GALERKIN METHOD FOR THE FLUID-STRUCTURE INTERACTION
    Feistauer, Miloslav
    Balazsova, Monika
    Horacek, Jaromir
    [J]. ALGORITMY 2020: 21ST CONFERENCE ON SCIENTIFIC COMPUTING, 2020, : 61 - 70
  • [4] Convergence of the Lagrange-Galerkin method for a fluid-rigid system
    Martín, JS
    Scheid, JF
    Takahashi, T
    Tucsnak, M
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 59 - 64
  • [5] A parallel solver for fluid-structure interaction problems with Lagrange multiplier
    Boffi, Daniele
    Credali, Fabio
    Gastaldi, Lucia
    Scacchi, Simone
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 : 406 - 424
  • [6] A SUBGRID VISCOSITY LAGRANGE-GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    Bermejo, Rodolfo
    Galan Del Sastre, Pedro
    Saavedra, Laura
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (02) : 288 - 302
  • [7] A Mass Conservative Scheme for Fluid-Structure Interaction Problems by the Staggered Discontinuous Galerkin Method
    Cheung, Siu Wun
    Chung, Eric
    Kim, Hyea Hyun
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) : 1423 - 1456
  • [8] Discontinuous Galerkin Method for the Solution of Elasto-Dynamic and Fluid-Structure Interaction Problems
    Feistauer, Miloslav
    Hadrava, Martin
    Kosik, Adam
    Horacek, Jaromir
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 155 - 163
  • [9] THE POSITIVE AND NEARLY CONSERVATIVE LAGRANGE-GALERKIN METHOD
    PRIESTLEY, A
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1994, 14 (02) : 277 - 294
  • [10] A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction
    Sheldona, Jason P.
    Miller, Scott T.
    Pitt, Jonathan S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 326 : 91 - 114