NonpModelCheck: An R Package for Nonparametric Lack-of-Fit Testing and Variable Selection

被引:4
|
作者
Zambom, Adriano Zanin [1 ]
Akritas, Michael G. [2 ]
机构
[1] Loyola Univ Chicago, Dept Math & Stat, Chicago, IL 60611 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2017年 / 77卷 / 10期
基金
巴西圣保罗研究基金会;
关键词
high dimensional one-way ANOVA; local polynomial regression; false discovery rate; FALSE DISCOVERY RATE; REGRESSION; SPECIFICATION; CONSEQUENCES; LIKELIHOOD; PREDICTION; SHRINKAGE; MODELS;
D O I
10.18637/jss.v077.i10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe the R package NonpModelCheck for hypothesis testing and variable selection in nonparametric regression. This package implements functions to perform hypothesis testing for the significance of a predictor or a group of predictors in a fully nonparametric heteroscedastic regression model using high-dimensional one-way ANOVA. Based on the p values from the test of each covariate, three different algorithms allow the user to perform variable selection using false discovery rate corrections. A function for classical local polynomial regression is implemented for the multivariate context, where the degree of the polynomial can be as large as needed and bandwidth selection strategies are built in.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 48 条