Deep Learning-Based Pixel-Wise Lesion Segmentation on Oral Squamous Cell Carcinoma Images

被引:21
|
作者
Martino, Francesco [1 ]
Bloisi, Domenico D. [2 ]
Pennisi, Andrea [3 ]
Fawakherji, Mulham [4 ]
Ilardi, Gennaro [1 ]
Russo, Daniela [1 ]
Nardi, Daniele [4 ]
Staibano, Stefania [1 ]
Merolla, Francesco [5 ]
机构
[1] Univ Naples Federico II, Dept Adv Biomed Sci, I-80131 Naples, Italy
[2] Univ Basilicata, Dept Math Comp Sci & Econ, I-85100 Potenza, Italy
[3] Allianz Benelux, B-1000 Brussels, Belgium
[4] Sapienza Univ Rome, Dept Comp Sci Control & Management Engn, I-00185 Rome, Italy
[5] Univ Molise, Dept Med & Hlth Sci V Tiberio, I-86100 Campobasso, Italy
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 22期
关键词
oral carcinoma; medical image segmentation; deep learning; AUTOMATED CLASSIFICATION; TISSUE; IDENTIFICATION;
D O I
10.3390/app10228285
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oral squamous cell carcinoma is the most common oral cancer. In this paper, we present a performance analysis of four different deep learning-based pixel-wise methods for lesion segmentation on oral carcinoma images. Two diverse image datasets, one for training and another one for testing, are used to generate and evaluate the models used for segmenting the images, thus allowing to assess the generalization capability of the considered deep network architectures. An important contribution of this work is the creation of the Oral Cancer Annotated (ORCA) dataset, containing ground-truth data derived from the well-known Cancer Genome Atlas (TCGA) dataset.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Deep Convolutional Pixel-wise Labeling for Skin Lesion Image Segmentation
    Youssef, Ali
    Bloisi, Domenico D.
    Muscio, Mario
    Pennisi, Andrea
    Nardi, Daniele
    Facchiano, Antonio
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2018, : 536 - 541
  • [2] Federated learning-based semantic segmentation for pixel-wise defect detection in additive manufacturing
    Mehta, Manan
    Shao, Chenhui
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2022, 64 : 197 - 210
  • [3] A PIXEL-WISE, LEARNING-BASED APPROACH FOR OCCLUSION ESTIMATION OF IRIS IMAGES IN POLAR DOMAIN
    Li, Yung-hui
    Savvides, Marios
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1357 - 1360
  • [4] Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning
    Savino, Pierclaudio
    Tondolo, Francesco
    [J]. JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2023, 13 (01) : 35 - 48
  • [5] Combination of pixel-wise and region-based deep learning for pavement inspection and segmentation
    Liu, Cunqiang
    Li, Juan
    Gao, Jie
    Gao, Ziqiang
    Chen, Zhongjie
    [J]. INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2022, 23 (09) : 3011 - 3023
  • [6] Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning
    Pierclaudio Savino
    Francesco Tondolo
    [J]. Journal of Civil Structural Health Monitoring, 2023, 13 : 35 - 48
  • [7] PIXEL-WISE NEURAL CELL INSTANCE SEGMENTATION
    Yi, Jingru
    Wu, Pengxiang
    Hoeppner, Daniel J.
    Metaxas, Dimitris
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 373 - 377
  • [8] Pixel-wise segmentation of cells in digitized Pap smear images
    Harangi, Balazs
    Bogacsovics, Gergo
    Toth, Janos
    Kovacs, Ilona
    Dani, Erzsebet
    Hajdu, Andras
    [J]. SCIENTIFIC DATA, 2024, 11 (01)
  • [9] Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal Vessel Segmentation
    Yan, Zengqiang
    Yang, Xin
    Cheng, Kwang-Ting
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (09) : 1912 - 1923
  • [10] Semantic Segmentation of Tree-Canopy in Urban Environment with Pixel-Wise Deep Learning
    Martins, Jose Augusto Correa
    Nogueira, Keiller
    Osco, Lucas Prado
    Gomes, Felipe David Georges
    Furuya, Danielle Elis Garcia
    Goncalves, Wesley Nunes
    Sant'Ana, Diego Andre
    Ramos, Ana Paula Marques
    Liesenberg, Veraldo
    dos Santos, Jefersson Alex
    de Oliveira, Paulo Tarso Sanches
    Marcato Junior, Jose
    [J]. REMOTE SENSING, 2021, 13 (16)