All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries

被引:2
|
作者
Kim, Kun Joong [1 ]
Rupp, Jennifer L. M. [1 ,2 ]
机构
[1] MIT, Dept Mat Sci & Engn, Electrochem Mat Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Electrochem Mat Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
LI-ION BATTERIES; OXIDE ELECTROLYTE; CHARGE-TRANSFER; HIGH-ENERGY; LI7LA3ZR2O12; TEMPERATURE; STABILITY; IMPEDANCE; LICOO2; COMPATIBILITY;
D O I
10.1039/d0ee02062a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The critical factors that determine the performance and lifetime of solid-state batteries (SSBs) are driven by the electrode-electrolyte interfaces. The main challenge in fabricating all-oxide cathode composites for garnet-based SSBs has been lowering the thermal processing window in which both good contact and low interfacial resistance can be achieved. Here, we report an alternative ceramic processing strategy that enables the fabrication of all-oxide composite cathodes at an unusually low processing temperature without the use of extra sintering additives or a fluid electrolyte (polymer-gel or liquid electrolyte). We present specific examples of the most common LiFePO4 and LiCoO2 cathodes with a Li-garnet (Li7La3Zr2O12, LLZO) solid-electrolyte. We demonstrate an infiltration step to directly synthesize the LiCoO2 cathode from metal salts in a porous LLZO scaffold, resulting in the formation of a composite cathode such as LiCoO2-LLZO on top of a dense LLZO solid electrolyte at a low processing temperature of 700 degrees C. A promising discharge capacity of 118 mA h g(-1) (3-4.05 V) with a low interfacial resistance of 62 Ohm cm(2) is realized for LiCoO2 with a lithium anode, whereas critical phase instabilities for LiFePO4 are uncovered. Our findings encourage a move away from synthesis techniques that employ particle mixing and sintering to fabricate composites. We provide a blueprint for circumventing adverse interphase reactions according to chemistry and ceramic thermal processing budgets in the preparation of these ceramic interfaces as well as for increasing the number of reaction sites for high-performing composite cathodes for Li-garnet SSBs. In addition, the ceramic methods presented are scalable and mass manufacturable for the large-scale production of such composite cathodes for future industry.
引用
收藏
页码:4930 / 4945
页数:16
相关论文
共 50 条
  • [1] Interfacial engineering for high-performance garnet-based solid-state lithium batteries
    Wang, Lingchen
    Wu, Jiaxin
    Bao, Chengshuai
    You, Zichang
    Lu, Yan
    Wen, Zhaoyin
    [J]. SUSMAT, 2024, 4 (01): : 72 - 105
  • [2] Interfaces in Garnet-Based All-Solid-State Lithium Batteries
    Wang, Dawei
    Zhu, Changbao
    Fu, Yanpeng
    Sun, Xueliang
    Yang, Yong
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (39)
  • [3] Negating interfacial impedance in garnet-based solid-state Li metal batteries
    Han, Xiaogang
    Gong, Yunhui
    Fu, Kun
    He, Xingfeng
    Hitz, Gregory T.
    Dai, Jiaqi
    Pearse, Alex
    Liu, Boyang
    Wang, Howard
    Rublo, Gary
    Mo, Yifei
    Thangadurai, Venkataraman
    Wachsman, Eric D.
    Hu, Liangbing
    [J]. NATURE MATERIALS, 2017, 16 (05) : 572 - +
  • [4] Negating interfacial impedance in garnet-based solid-state Li metal batteries
    Han X.
    Gong Y.
    Fu K.
    He X.
    Hitz G.T.
    Dai J.
    Pearse A.
    Liu B.
    Wang H.
    Rubloff G.
    Mo Y.
    Thangadurai V.
    Wachsman E.D.
    Hu L.
    [J]. Nature Materials, 2017, 16 (5) : 572 - 579
  • [5] Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries
    Chen, Yuncai
    Jiang, Yidong
    Chi, Shang-Sen
    Woo, Haw Jiunn
    Yu, Kai
    Ma, Jun
    Wang, Jun
    Wang, Chaoyang
    Deng, Yonghong
    [J]. JOURNAL OF POWER SOURCES, 2022, 521
  • [6] Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework
    Long Chen
    Xiaoming Qiu
    Zhiming Bai
    Li-Zhen Fan
    [J]. Journal of Energy Chemistry, 2021, 52 (01) : 210 - 217
  • [7] Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework
    Chen, Long
    Qiu, Xiaoming
    Bai, Zhiming
    Fan, Li-Zhen
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 52 : 210 - 217
  • [8] Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries
    Ye, Ruijie
    Tsai, Chih-Long
    Ihrig, Martin
    Sevinc, Serkan
    Rosen, Melanie
    Dashjav, Enkhtsetseg
    Sohn, Yoo Jung
    Figgemeier, Egbert
    Finsterbusch, Martin
    [J]. GREEN CHEMISTRY, 2020, 22 (15) : 4952 - 4961
  • [9] Engineering Li Metal Anode for Garnet-Based Solid-State Batteries
    Wang, Tengrui
    Luo, Wei
    Huang, Yunhui
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2023, 56 (06) : 667 - 676
  • [10] Garnet-Based Solid-State Li Batteries: From Materials Design to Battery Architecture
    Abouali, Sara
    Yim, Chae-Ho
    Merati, Ali
    Abu-Lebdeh, Yaser
    Thangadurai, Venkataraman
    [J]. ACS ENERGY LETTERS, 2021, 6 (05) : 1920 - 1941