Information Geometric Complexity of a Trivariate Gaussian Statistical Model

被引:7
|
作者
Felice, Domenico [1 ,2 ]
Cafaro, Carlo [3 ]
Mancini, Stefano [1 ,2 ]
机构
[1] Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[3] Clarkson Univ, Dept Math, Potsdam, NY 13699 USA
关键词
probability theory; Riemannian geometry; complexity; MANIFOLDS;
D O I
10.3390/e16062944
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We evaluate the information geometric complexity of entropic motion on low-dimensional Gaussian statistical manifolds in order to quantify how difficult it is to make macroscopic predictions about systems in the presence of limited information. Specifically, we observe that the complexity of such entropic inferences not only depends on the amount of available pieces of information but also on the manner in which such pieces are correlated. Finally, we uncover that, for certain correlational structures, the impossibility of reaching the most favorable configuration from an entropic inference viewpoint seems to lead to an information geometric analog of the well-known frustration effect that occurs in statistical physics.
引用
收藏
页码:2944 / 2958
页数:15
相关论文
共 50 条
  • [1] The effect of microscopic correlations on the information geometric complexity of Gaussian statistical models
    Ali, S. A.
    Cafaro, C.
    Kim, D. -H.
    Mancini, S.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (16) : 3117 - 3127
  • [2] Gaussian random bridges and a geometric model for information equilibrium
    Menguetuerk, Levent Ali
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 465 - 483
  • [3] A hierarchical deformable model using statistical and geometric information
    Shen, DG
    Davatzikos, C
    [J]. IEEE WORKSHOP ON MATHEMATICAL METHODS IN BIOMEDICAL IMAGE ANALYSIS, PROCEEDINGS, 2000, : 146 - 153
  • [4] Information geometric methods for complexity
    Felice, Domenico
    Cafaro, Carlo
    Mancini, Stefano
    [J]. CHAOS, 2018, 28 (03)
  • [5] A trivariate Gaussian copula stochastic frontier model with sample selection
    Liu, Jianxu
    Sriboonchitta, Songsak
    Wiboonpongse, Aree
    Denoeux, Thierry
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 137 : 181 - 198
  • [6] Information-Geometric Indicators of Chaos in Gaussian Models on Statistical Manifolds of Negative Ricci Curvature
    Carlo Cafaro
    [J]. International Journal of Theoretical Physics, 2008, 47 : 2924 - 2933
  • [7] Information-geometric indicators of chaos in Gaussian models on statistical manifolds of negative Ricci curvature
    Cafaro, Carlo
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (11) : 2924 - 2933
  • [8] ON THE COMPLEXITY OF INFORMATION PLANNING IN GAUSSIAN MODELS
    Papachristoudis, Georgios
    Fisher, John W., III
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2184 - 2188
  • [9] Gaussian curvature of spherical shells: a geometric measure of complexity
    Singh, Sayuri
    Baboolal, Dharmanand
    Goswami, Rituparno
    Maharaj, Sunil D.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (23)
  • [10] An adaptive-focus deformable model using statistical and geometric information
    Shen, DG
    Davatzikos, C
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (08) : 906 - 913