Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using a deep convolutional neural network

被引:27
|
作者
Yamada, Atsuo [1 ]
Niikura, Ryota [1 ]
Otani, Keita [2 ]
Aoki, Tomonori [1 ]
Koike, Kazuhiko [1 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Gastroenterol, Tokyo, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo, Japan
关键词
MULTICENTER; COLONOSCOPY; LESIONS;
D O I
10.1055/a-1266-1066
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background Although colorectal neoplasms are the most common abnormalities found in colon capsule endoscopy (CCE), no computer-aided detection method is yet available. We developed an artificial intelligence (AI) system that uses deep learning to automatically detect such lesions in CCE images. Methods We trained a deep convolutional neural network system based on a Single Shot MultiBox Detector using 15 933 CCE images of colorectal neoplasms, such as polyps and cancers. We assessed performance by calculating areas under the receiver operating characteristic curves, along with sensitivities, specificities, and accuracies, using an independent test set of 4784 images, including 1850 images of colorectal neoplasms and 2934 normal colon images. Results The area under the curve for detection of colorectal neoplasia by the AI model was 0.902. The sensitivity, specificity, and accuracy were 79.0%, 87.0%, and 83.9%, respectively, at a probability cutoff of 0.348. Conclusions We developed and validated a new AI-based system that automatically detects colorectal neoplasms in CCE images.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 50 条
  • [1] Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network
    Diego Marin-Santos
    Juan A. Contreras-Fernandez
    Isaac Perez-Borrero
    Hector Pallares-Manrique
    Manuel E. Gegundez-Arias
    [J]. Applied Intelligence, 2023, 53 : 12632 - 12646
  • [2] Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network
    Marin-Santos, Diego
    Contreras-Fernandez, Juan A.
    Perez-Borrero, Isaac
    Pallares-Manrique, Hector
    Gegundez-Arias, Manuel E.
    [J]. APPLIED INTELLIGENCE, 2023, 53 (10) : 12632 - 12646
  • [3] Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network
    Aoki, Tomonori
    Yamada, Atsuo
    Aoyama, Kazuharu
    Saito, Hiroaki
    Tsuboi, Akiyoshi
    Nakada, Ayako
    Niikura, Ryota
    Fujishiro, Mitsuhiro
    Oka, Shiro
    Ishihara, Soichiro
    Matsuda, Tomoki
    Tanaka, Shinji
    Koike, Kazuhiko
    Tada, Tomohiro
    [J]. GASTROINTESTINAL ENDOSCOPY, 2019, 89 (02) : 357 - +
  • [4] A Deep Convolutional Neural Network for Bleeding Detection in Wireless Capsule Endoscopy Images
    Jia, Xiao
    Meng, Max Q. -H.
    [J]. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 639 - 642
  • [5] Automatic detection of colonic ulcers and erosions in colon capsule endoscopy images using a convolutional neural network
    Ribeiro, T.
    Mascarenhas Saraiva, M.
    Afonso, J.
    Cardoso, H.
    Ferreira, J.
    Andrade, P.
    Jorge, R.
    Lopes, S.
    Macedo, G.
    [J]. JOURNAL OF CROHNS & COLITIS, 2021, 15 : S205 - S206
  • [6] Automatic Detection of Colonic Ulcers and Erosions in Colon Capsule Endoscopy Images Using a Convolutional Neural Network
    Afonso, Joao
    Mascarenhas, Miguel
    Ribeiro, Tiago
    Cardoso, Helder
    Andrade, Patricia
    Ferreira, Joao
    Parente, Marco
    Natal, Renato
    Macedo, Guilherme
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2021, 116 : S254 - S255
  • [7] Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network
    Saito, Hiroaki
    Aoki, Tomonori
    Aoyama, Kazuharu
    Kato, Yusuke
    Tsuboi, Akiyoshi
    Yamada, Atsuo
    Fujishiro, Mitsuhiro
    Oka, Shiro
    Ishihara, Soichiro
    Matsuda, Tomoki
    Nakahori, Masato
    Tanaka, Shinji
    Koike, Kazuhiko
    Tada, Tomohiro
    [J]. GASTROINTESTINAL ENDOSCOPY, 2020, 92 (01) : 144 - +
  • [8] Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network
    Aoki, Tomonori
    Yamada, Atsuo
    Kato, Yusuke
    Saito, Hiroaki
    Tsuboi, Akiyoshi
    Nakada, Ayako
    Niikura, Ryota
    Fujishiro, Mitsuhiro
    Oka, Shiro
    Ishihara, Soichiro
    Matsuda, Tomoki
    Nakahori, Masato
    Tanaka, Shinji
    Koike, Kazuhiko
    Tada, Tomohiro
    [J]. JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2020, 35 (07) : 1196 - 1200
  • [9] Artificial intelligence and colon capsule endoscopy: automatic detection of blood in colon capsule endoscopy using a convolutional neural network
    Saraiva, Miguel Mascarenhas
    Ferreira, Joao P. S.
    Cardoso, Helder
    Afonso, Joao
    Ribeiro, Tiago
    Andrade, Patricia
    Parente, Marco P. L.
    Jorge, Renato N.
    Macedo, Guilherme
    [J]. ENDOSCOPY INTERNATIONAL OPEN, 2021, 09 (08) : E1264 - E1268
  • [10] Deep learning and colon capsule endoscopy: automatic detection of blood and colonic mucosal lesions using a convolutional neural network
    Mascarenhas, Miguel
    Ribeiro, Tiago
    Afonso, Joao
    Ferreira, Joao P. S.
    Cardoso, Helder
    Andrade, Patricia
    Parente, Marco P. L.
    Jorge, Renato N.
    Saraiva, Miguel Mascarenhas
    Macedo, Guilherme
    [J]. ENDOSCOPY INTERNATIONAL OPEN, 2022, 10 (02) : E171 - E177