Alleviating Cold-Start Problem by Using Implicit Feedback

被引:0
|
作者
Zhang, Lei [1 ]
Meng, Xiang-Wu [1 ]
Chen, Jun-Liang [1 ]
Xiong, Si-Cheng [1 ]
Duan, Kull [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Network & Switching Technol, Beijing 100876, Peoples R China
关键词
cold-start recommendations; implicit feedback; collaborative filtering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Collaborative Filter (CF) methods supply favorably personalized predictions relying on adequate data from users. But the ratings, of new users or about new items are not always available and CF can't make a precise recommendation in this case. In our paper, we present our consideration oil alleviating cold-start problem by using users' implicit feedback data, which is not the same as the traditional methods which focus completely oil the sparse data. To exploit the significance of users' implicit feedback for alleviating cold-start problem, we present two independent strategies-the neural network-based M1 method and the collaboration-based M2 method, by which the significance of users' implicit feedback for cold-start recommendation has been preliminarily demonstrated.
引用
收藏
页码:763 / 771
页数:9
相关论文
共 50 条
  • [1] Alleviating the cold-start problem by incorporating movies facebook pages
    Rosli, Ahmad Nurzid
    You, Tithrottanak
    Ha, Inay
    Chung, Kyung-Yong
    Jo, Geun-Sik
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2015, 18 (01): : 187 - 197
  • [2] Alleviating the cold-start problem by incorporating movies facebook pages
    Ahmad Nurzid Rosli
    Tithrottanak You
    Inay Ha
    Kyung-Yong Chung
    Geun-Sik Jo
    [J]. Cluster Computing, 2015, 18 : 187 - 197
  • [3] Alleviating the New Item Cold-Start Problem by Combining Image Similarity
    Cao, Dong
    Wu, Xiujun
    Zhou, Qiang
    Hu, Yan
    [J]. PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 589 - 595
  • [4] Alleviating Cold-start Problem in CTR Prediction with A Variational Embedding Learning Framework
    Xu, Xiaoxiao
    Yang, Chen
    Yu, Qian
    Fang, Zhiwei
    Wang, Jiaxing
    Fan, Chaosheng
    He, Yang
    Peng, Changping
    Lin, Zhangang
    Shao, Jingping
    [J]. PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 27 - 35
  • [5] SVD++ AND CLUSTERING APPROACHES TO ALLEVIATING THE COLD-START PROBLEM FOR RECOMMENDATION SYSTEMS
    Al-Sabaawi, Ali Mohsin Ahmed
    Karacan, Hacer
    Yenice, Yusuf Erkan
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2021, 17 (02): : 383 - 396
  • [6] An explanatory item response theory method for alleviating the cold-start problem in adaptive learning environments
    Park, Jung Yeon
    Joo, Seang-Hwane
    Cornillie, Frederik
    van der Maas, Han L. J.
    Van den Noortgate, Wim
    [J]. BEHAVIOR RESEARCH METHODS, 2019, 51 (02) : 895 - 909
  • [7] An explanatory item response theory method for alleviating the cold-start problem in adaptive learning environments
    Jung Yeon Park
    Seang-Hwane Joo
    Frederik Cornillie
    Han L. J. van der Maas
    Wim Van den Noortgate
    [J]. Behavior Research Methods, 2019, 51 : 895 - 909
  • [8] Using Gamification to Tackle the Cold-Start Problem in Recommender Systems
    Feil, Sebastian
    Kretzer, Martin
    Werder, Karl
    Maedche, Alexander
    [J]. PROCEEDINGS OF THE 19TH ACM CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING COMPANION, 2016, : 253 - 256
  • [9] Alleviating the cold-start playlist continuation in music recommendation using latent semantic indexing
    Ali Yürekli
    Cihan Kaleli
    Alper Bilge
    [J]. International Journal of Multimedia Information Retrieval, 2021, 10 : 185 - 198
  • [10] Alleviating the cold-start playlist continuation in music recommendation using latent semantic indexing
    Yurekli, Ali
    Kaleli, Cihan
    Bilge, Alper
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2021, 10 (03) : 185 - 198