Electron-Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots

被引:40
|
作者
Banszerus, L. [1 ,2 ,4 ]
Rothstein, A. [1 ,2 ]
Fabian, T. [3 ]
Moller, S. [1 ,2 ,4 ]
Icking, E. [1 ,2 ,4 ]
Trellenkamp, S. [5 ]
Lentz, F. [5 ]
Neumaier, D. [6 ,7 ]
Watanabe, K. [8 ]
Taniguchi, T. [9 ]
Libisch, F. [3 ]
Volk, C. [1 ,2 ,4 ]
Stampfer, C. [1 ,2 ,4 ]
机构
[1] Rhein Westfal TH Aachen, JARA FIT, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[3] TU Wien, Inst Theoret Phys, A-1040 Vienna, Austria
[4] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[5] Forschungszentrum Julich, Helmholtz Nano Facil, D-52425 Julich, Germany
[6] AMO GmbH, Gesell Angew Mikro & Optoelekt, D-52074 Aachen, Germany
[7] Univ Wuppertal, D-42285 Wuppertal, Germany
[8] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 3050044, Japan
[9] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
基金
欧洲研究理事会;
关键词
quantum dot; bilayer graphene; electron-hole crossover; SPIN QUBIT;
D O I
10.1021/acs.nanolett.0c03227
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electron and hole Bloch states in bilayer graphene exhibit topological orbital magnetic moments with opposite signs, which allows for tunable valley-polarization in an out-of-plane magnetic field. This property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here, we show measurements of the electron-hole crossover in a bilayer graphene QD, demonstrating opposite signs of the magnetic moments associated with the Berry curvature. Using three layers of top gates, we independently control the tunneling barriers while tuning the occupation from the few-hole regime to the few-electron regime, crossing the displacement-field-controlled band gap. The band gap is around 25 meV, while the charging energies of the electron and hole dots are between 3 and 5 meV. The extracted valley g-factor is around 17 and leads to opposite valley polarization for electrons and holes at moderate B-fields. Our measurements agree well with tight-binding calculations for our device.
引用
收藏
页码:7709 / 7715
页数:7
相关论文
共 50 条
  • [1] Electron-Hole Crossover in Graphene Quantum Dots
    Guettinger, J.
    Stampfer, C.
    Libisch, F.
    Frey, T.
    Burgdoerfer, J.
    Ihn, T.
    Ensslin, K.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (04)
  • [2] Gate-controlled Kondo screening in graphene: Quantum criticality and electron-hole asymmetry
    Vojta, M.
    Fritz, L.
    Bulla, R.
    [J]. EPL, 2010, 90 (02)
  • [3] Gate-Defined Electron-Hole Double Dots in Bilayer Graphene
    Banszerus, L.
    Frohn, B.
    Epping, A.
    Neumaier, D.
    Watanabe, K.
    Taniguchi, T.
    Stampfer, C.
    [J]. NANO LETTERS, 2018, 18 (08) : 4785 - 4790
  • [4] Gate-controlled electron spins in quantum dots
    Prabhakar, Sanjay
    Melnik, Roderick
    Bonilla, Luis L.
    [J]. 3RD INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS, 2013, 1569 : 380 - 383
  • [5] Excitonic absorption in gate-controlled graphene quantum dots
    Gueclue, A. D.
    Potasz, P.
    Hawrylak, P.
    [J]. PHYSICAL REVIEW B, 2010, 82 (15):
  • [6] Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene
    Li, Jing
    Wen, Hua
    Watanabe, Kenji
    Taniguchi, Takashi
    Zhu, Jun
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [7] Electron-hole hybridization in bilayer graphene
    Siqi Wang
    Mervin Zhao
    Changjian Zhang
    Sui Yang
    Yuan Wang
    Kenji Watanabe
    Takashi Taniguchi
    James Hone
    Xiang Zhang
    [J]. National Science Review, 2020, 7 (02) : 248 - 253
  • [8] Electron-hole hybridization in bilayer graphene
    Wang, Siqi
    Zhao, Mervin
    Zhang, Changjian
    Yang, Sui
    Wang, Yuan
    Watanabe, Kenji
    Taniguchi, Takashi
    Hone, James
    Zhang, Xiang
    [J]. NATIONAL SCIENCE REVIEW, 2020, 7 (02) : 248 - 253
  • [9] Electron-hole bilayer quantum dots:: phase diagram and exciton localization
    Kärkkäinen, K
    Koskinen, M
    Manninen, M
    Reimann, SM
    [J]. SOLID STATE COMMUNICATIONS, 2004, 130 (3-4) : 187 - 191
  • [10] Quantum Coulomb blockade in gate-controlled quantum dots
    Bednarek, S
    Szafran, B
    Adamowski, J
    [J]. MICROELECTRONIC ENGINEERING, 2000, 51-2 : 99 - 109