A note on random 2-SAT with prescribed literal degrees

被引:0
|
作者
Cooper, C [1 ]
Frieze, A [1 ]
Sorkin, GB [1 ]
机构
[1] Univ London Goldsmiths Coll, Sch Math & Comp Sci, London SE14 6NW, England
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Two classic "phase transitions" in discrete mathematics are the emergence of a giant component in a random graph as the density of edges increases, and the transition of a random 2-SAT formula from satisfiable to unsatisfiable as the density of clauses increases. The random-graph result has been extended to the case of prescribed degree sequences, where the almost-sure nonexistence or existence of a giant component is related to a simple property of the degree sequence. We similarly extend the satisfiability result, by relating the almost-sure satisfiability or unsatisfiability of a random 2-SAT formula to an analogous property of a prescribed literal sequence.
引用
收藏
页码:316 / 320
页数:5
相关论文
共 50 条
  • [1] Random 2-SAT with Prescribed Literal Degrees
    Colin Cooper
    Alan Frieze
    Gregory B. Sorkin
    Algorithmica, 2007, 48 : 249 - 265
  • [2] Random 2-SAT with prescribed literal degrees
    Cooper, Colin
    Frieze, Alan
    Sorkin, Gregory B.
    ALGORITHMICA, 2007, 48 (03) : 249 - 265
  • [3] Random 2-SAT and unsatisfiability
    Verhoeven, Y
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 119 - 123
  • [4] A remark on random 2-SAT
    Goerdt, A
    DISCRETE APPLIED MATHEMATICS, 1999, 97 : 107 - 110
  • [5] Random 2-SAT and unsatisfiability
    Verhoeven, Yann
    Information Processing Letters, 1999, 72 (03): : 119 - 123
  • [6] Random 2-SAT: results and problems
    de la Vega, WF
    THEORETICAL COMPUTER SCIENCE, 2001, 265 (1-2) : 131 - 146
  • [7] Approximating Highly Satisfiable Random 2-SAT
    Bulatov, Andrei A.
    Wang, Cong
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2014, 2014, 8561 : 384 - 398
  • [8] Random 2-sat does not depend on a giant
    Kravitz, David
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 408 - 422
  • [9] Random 2-SAT Solution Components and a Fitness Landscape
    Pitman, Damien
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2011, 13 (02): : 45 - 62
  • [10] The number of satisfying assignments of random 2-SAT formulas
    Achlioptas, Dimitris
    Coja-Oghlan, Amin
    Hahn-Klimroth, Max
    Lee, Joon
    Mueller, Noela
    Penschuck, Manuel
    Zhou, Guangyan
    RANDOM STRUCTURES & ALGORITHMS, 2021, 58 (04) : 609 - 647