Supercritical Nonlinear Vibration of a Fluid-Conveying Pipe Subjected to a Strong External Excitation

被引:5
|
作者
Zhang, Yan-Lei [1 ]
Feng, Hui-Rong [2 ]
Chen, Li-Qun [3 ,4 ]
机构
[1] Shanghai Second Polytech Univ, Coll Engn, Shanghai 201209, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Transportat & Civil Engn, Fuzhou 350002, Fujian, Peoples R China
[3] Shanghai Univ, Dept Mech, Shanghai 200444, Peoples R China
[4] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
PULSATING FLUID; 0/1; RESONANCE; DYNAMICS; BIFURCATIONS;
D O I
10.1155/2016/3907498
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonlinear vibration of a fluid-conveying pipe subjected to a transverse external harmonic excitation is investigated in the case with two-to-one internal resonance. The excitation amplitude is in the same magnitude of the transverse displacement. The fluid in the pipes flows in the speed larger than the critical speed so that the straight configuration becomes an unstable equilibrium and two curved configurations bifurcate as stable equilibriums. The motion measured from each of curved equilibrium configurations is governed by a nonlinear integro-partial-differential equation with variable coefficients. The Galerkin method is employed to discretize the governing equation into a gyroscopic system consisting of a set of coupled nonlinear ordinary differential equations. The method of multiple scales is applied to analyze approximately the gyroscopic system. A set of first-order ordinary differential equations governing the modulations of the amplitude and the phase are derived via the method. In the supercritical regime, the subharmonic, superharmonic, and combination resonances are examined in the presence of the 2 : 1 internal resonance. The steady-state responses and their stabilities are determined. The various jump phenomena in the amplitude-frequency response curves are demonstrated. The effects of the viscosity, the excitation amplitude, the nonlinearity, and the flow speed are observed. The analytical results are supported by the numerical integration.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Nonlinear Vibration of a Pipe Conveying Fluid with Weakly External Excitation in the Supercritical Regime
    Zhang, Yanlei
    Chen, Liqun
    DYNAMICS FOR SUSTAINABLE ENGINEERING, 2011, VOL 3, 2011, : 1057 - 1065
  • [2] Vibration of fluid-conveying pipe with nonlinear supports at both ends
    Sha WEI
    Xiong YAN
    Xin FAN
    Xiaoye MAO
    Hu DING
    Liqun CHEN
    Applied Mathematics and Mechanics(English Edition), 2022, 43 (06) : 845 - 862
  • [3] Vibration of fluid-conveying pipe with nonlinear supports at both ends
    Sha Wei
    Xiong Yan
    Xin Fan
    Xiaoye Mao
    Hu Ding
    Liqun Chen
    Applied Mathematics and Mechanics, 2022, 43 : 845 - 862
  • [4] The dynamic analysis of a multispan fluid-conveying pipe subjected to external load
    Wu, JS
    Shih, PY
    JOURNAL OF SOUND AND VIBRATION, 2001, 239 (02) : 201 - 215
  • [5] Vibration of fluid-conveying pipe with nonlinear supports at both ends
    Wei, Sha
    Yan, Xiong
    Fan, Xin
    Mao, Xiaoye
    Ding, Hu
    Chen, Liqun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2022, 43 (06) : 845 - 862
  • [6] Nonlinear dynamics of a fluid-conveying curved pipe subjected to motion-limiting constraints and a harmonic excitation
    Lin, Wang
    Qiao, Ni
    JOURNAL OF FLUIDS AND STRUCTURES, 2008, 24 (01) : 96 - 110
  • [7] Nonlinear vibration analysis of a supercritical fluid-conveying pipe made of functionally graded material with initial curvature
    Zhen, Yaxin
    Gong, Yafei
    Tang, Ye
    COMPOSITE STRUCTURES, 2021, 268
  • [8] Nonlinear Parametric Vibration of a Fluid-Conveying Pipe Flexibly Restrained at the Ends
    Qian Li
    Wei Liu
    Kuan Lu
    Zhufeng Yue
    Acta Mechanica Solida Sinica, 2020, 33 : 327 - 346
  • [9] Forced vibration of a cantilever fluid-conveying pipe on nonlinear elastic foundation
    Zhang, Zi-Long
    Tang, Min
    Ni, Qiao
    Tang, M., 1600, Chinese Vibration Engineering Society (32): : 17 - 21
  • [10] Nonlinear lateral vibration of a vertical fluid-conveying pipe with end mass
    Yoshizawa, M
    Suzuki, T
    Takayanagi, M
    Hashimoto, K
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 1998, 41 (03) : 652 - 661