Asymptotic observability of low-dimensional powder chaos in a three-degrees-of-freedom scattering system

被引:17
|
作者
Drotos, Gabor [1 ,2 ]
Montoya, Francisco Gonzalez [3 ]
Jung, Christof [3 ]
Tel, Tamas [1 ,2 ]
机构
[1] Eotvos Lorand Univ, Inst Theoret Phys, H-1117 Budapest, Hungary
[2] MTA ELTE Theoret Phys Res Grp, H-1117 Budapest, Hungary
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 02期
关键词
SEMICLASSICAL CROSS-SECTION; APPROXIMATION; TOPOLOGY;
D O I
10.1103/PhysRevE.90.022906
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We treat a chaotic Hamiltonian scattering system with three degrees of freedom where the chaotic invariant set is of low dimension. Then the chaos and its structure are not visible in scattering functions plotted along one-dimensional lines in the set of asymptotic initial conditions. We show that an asymptotic observer can nevertheless see the structure of the chaotic set in an appropriate scattering function on the two-dimensional impact parameter plane and in the doubly differential cross section. Rainbow singularities in the cross section carry over the symbolic dynamics of the chaotic set into the cross section. A smooth image of the fractal structure of the chaotic set can be reconstructed on the domain of the cross section.
引用
收藏
页数:8
相关论文
共 25 条
  • [1] Three-degrees-of-freedom Maglev system with actuators and permanent magnets
    Oka, Koichi
    Higuchi, Toshiro
    [J]. 1600, Scripta Technica Inc, New York, NY, United States (116):
  • [2] A three-degrees-of-freedom Maglev system with actuators and permanent magnets
    Oka, K
    Higuchi, T
    [J]. ELECTRICAL ENGINEERING IN JAPAN, 1996, 116 (05) : 138 - 147
  • [3] LOW-DIMENSIONAL CHAOS IN A HYDRODYNAMIC SYSTEM
    BRANDSTATER, A
    SWIFT, J
    SWINNEY, HL
    WOLF, A
    FARMER, JD
    JEN, E
    CRUTCHFIELD, PJ
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (16) : 1442 - 1445
  • [4] The stability analysis for the motion of a nonlinear damped vibrating dynamical system with three-degrees-of-freedom
    Amer, T. S.
    Bek, M. A.
    Hassan, S. S.
    Elbendary, Sherif
    [J]. RESULTS IN PHYSICS, 2021, 28
  • [5] Kinematic analysis and dimensional synthesis of a three-degrees-of-freedom hybrid-drive parallel mechanism
    Zhao, Xingyu
    Zhao, Tieshi
    Xu, Xuehan
    Bian, Hui
    Ding, Shixing
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2019, 233 (08) : 2728 - 2752
  • [6] Embeddings of low-dimensional strange attractors: Topological invariants and degrees of freedom
    Romanazzi, Nicola
    Lefranc, Marc
    Gilmore, Robert
    [J]. PHYSICAL REVIEW E, 2007, 75 (06):
  • [7] The geodynamo as a low-dimensional deterministic system at the edge of chaos
    Ryan, D. A.
    Sarson, G. R.
    [J]. EPL, 2008, 83 (04)
  • [8] Benchmarking sparse system identification with low-dimensional chaos
    Kaptanoglu, Alan A.
    Zhang, Lanyue
    Nicolaou, Zachary G.
    Fasel, Urban
    Brunton, Steven L.
    [J]. NONLINEAR DYNAMICS, 2023, 111 (14) : 13143 - 13164
  • [9] Benchmarking sparse system identification with low-dimensional chaos
    Alan A. Kaptanoglu
    Lanyue Zhang
    Zachary G. Nicolaou
    Urban Fasel
    Steven L. Brunton
    [J]. Nonlinear Dynamics, 2023, 111 : 13143 - 13164
  • [10] Near the resonance behavior of a periodicaly forced partially dissipative three-degrees-of-freedom mechanical system
    Pietrzak, Pawel
    Oginska, Marta
    Krasuski, Tadeusz
    Figueiredo, Kevin
    Olejnik, Pawel
    [J]. LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2018, 15 (05):