On approximation by rational functions with prescribed numerator degree in LP spaces

被引:5
|
作者
Yu, D. S. [1 ]
Zhou, S. P. [1 ]
机构
[1] Zhejiang Sci Tech Univ, Inst Math, Xiasha Econ Dev Area, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
rational function; prescribed numerator degree; L-P space; approximation rate;
D O I
10.1007/s10474-006-0051-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that, if f (x) is an element of L-[-1,1](p), < p < infinity, changes sign exactly l times, then there exists a real rational function r(x) is an element of R-n(l) such that parallel to f-r parallel to(p) <= C-p,C-delta(l + 1)(2) omega(f, (n-1))(p), which generalizes a result of Leviatan and Lubinsky in [2]. A weaker similar result in L-[-1,1](1) is also established.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 50 条