FEDERATED LUNG CANCER PREDICTION USING HISTOPATHOLOGICAL MEDICAL IMAGES

被引:1
|
作者
Ayekai, Browne Judith [1 ]
Chen Wenyu [1 ]
Hailemichael, Mamo Tadiyos [1 ]
Fiasam, Linda Delali [3 ]
Kwaku, Agbesi Victor [1 ]
Agbley, Fortune [4 ]
Ayivi, Williams [2 ]
Sam, Francis [3 ]
Danso, Juliana Mantebea [3 ]
Kulevome, Delanyo [2 ]
Mawuli, Cobbinah Bernard [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Informat & Software E, Chengdu 610054, Peoples R China
[4] Kwame Nkrumah Univ Sci & Technol, Dept English, Kumasi, Ghana
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Federated learning; Medical imaging; Deep learning; Lung Cancer;
D O I
10.1109/ICCWAMTIP56608.2022.10016519
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning is increasingly significant in health science because it can infer valuable information from high-dimensional data. However, combining research and patient data from various organizations and hospitals is frequently not practical due to privacy concerns. In this research, we conduct a study of federated learning for lung cancer prediction to demonstrate the effectiveness of collaborative and decentralized learning in a context where data is privacy preserved. We also conducted visual interpretation using GradCAM to validate the robust performance of the decentralized method in predicting lung cancer.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Automated Lung and Colon Cancer Classification Using Histopathological Images
    Ji, Jie
    Li, Jirui
    Zhang, Weifeng
    Geng, Yiqun
    Dong, Yuejiao
    Huang, Jiexiong
    Hong, Liangli
    [J]. BIOMEDICAL ENGINEERING AND COMPUTATIONAL BIOLOGY, 2024, 15
  • [2] Attention Based Deep Multiple Instance Learning Approach for Lung Cancer Prediction using Histopathological Images
    Moranguinho, Joao
    Pereira, Tania
    Ramos, Bernardo
    Morgado, Joana
    Costa, Jose Luis
    Oliveira, Helder P.
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2852 - 2855
  • [3] Lung cancer disease prediction with CT scan and histopathological images feature analysis using deep learning techniques
    Rajasekar, Vani
    Vaishnnave, M. P.
    Premkumar, S.
    Sarveshwaran, Velliangiri
    Rangaraaj, V.
    [J]. RESULTS IN ENGINEERING, 2023, 18
  • [4] Federated Fusion of Magnified Histopathological Images for Breast Tumor Classification in the Internet of Medical Things
    Agbley, Bless Lord Y.
    Li, Jian Ping
    Haq, Amin Ul
    Bankas, Edem Kwedzo
    Mawuli, Cobbinah Bernard
    Ahmad, Sultan
    Khan, Shakir
    Khan, Ahmad Raza
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (06) : 3389 - 3400
  • [5] Detecting Lung Cancer from Histopathological Images using Convolution Neural Network
    Karim, Dewan Ziaul
    Bushra, Tasfia Anika
    [J]. 2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 626 - 631
  • [6] Detection of cancer lesions in histopathological lung images using a sparse PCA network
    Ram, Sundaresh
    Tang, Wenfei
    Bell, Alexander J.
    Spencer, Cara
    Buschhuas, Alexander
    Hatt, Charles R.
    di Magliano, Marina P.
    Galban, Stefanie
    Galban, Craig J.
    [J]. CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [7] Enhancing Breast Cancer Classification in Histopathological Images through Federated Learning Framework
    Peta, Jyothi
    Koppu, Srinivas
    [J]. IEEE ACCESS, 2023, 11 (61866-61880) : 61866 - 61880
  • [8] Towards survival prediction of cancer patients using medical images
    Haq N.U.
    Tahir B.
    Firdous S.
    Mehmood M.A.
    [J]. PeerJ Computer Science, 2022, 8
  • [9] Towards survival prediction of cancer patients using medical images
    Ul Haq, Nazeef
    Tahir, Bilal
    Firdous, Samar
    Mehmood, Muhammad Amir
    [J]. PEERJ COMPUTER SCIENCE, 2022, 8
  • [10] Prediction of medical images using wavelets
    Tashakkori, R
    Tyler, JM
    Pianykh, OS
    [J]. WAVELET APPLICATIONS VII, 2000, 4056 : 332 - 340