Quantum properties of charged ferroelectric domain walls

被引:21
|
作者
Sturman, B. [1 ]
Podivilov, E. [1 ]
Stepanov, M. [2 ]
Tagantsev, A. [3 ]
Setter, N. [3 ]
机构
[1] Russian Acad Sci, Inst Automat & Electrometry, Novosibirsk 630090, Russia
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[3] Swiss Fed Inst Technol SPFL, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
ATOMIC-SCALE; ENCOUNTERING DOMAINS; ELECTRON-GAS; CONDUCTANCE;
D O I
10.1103/PhysRevB.92.214112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the properties of charged domain walls in ferroelectrics as a quantum problem. This includes determination of self-consistent attracting 1D potential for compensating charge carriers, the number and positions of discrete energy levels in this potential, dependencies on the ferroelectric characteristics, as well as the spatial structure and formation energy of the wall. Our description is based on the Hartree and Thomas-Fermi methods and Landau theory for the ferroelectric transitions. Changeover from a few to many quantum levels (with the electron binding energies similar to 1 eV) is controlled by a single characteristic parameter. The quantum models well describe the core of the wall, whose width is typically similar to 10 nm. Additionally, the walls possess pronounced long-range tails which are due to trap recharging. For the trap concentration N-t = (10(17)-10(18)) cm(-3), the tail length l is of the mu m scale. On the distances much larger than l the walls are electrically uncoupled from each other and the crystal faces.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Energetics of charged domain walls in ferroelectric crystals
    Liu, Y. Y.
    Liu, J. J.
    Xie, S. H.
    Li, J. Y.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (17)
  • [2] Conduction of Topologically Protected Charged Ferroelectric Domain Walls
    Wu, Weida
    Horibe, Y.
    Lee, N.
    Cheong, S-W.
    Guest, J. R.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [3] Ferroelectric charged domain walls in an applied electric field
    Gureev, M. Y.
    Mokry, P.
    Tagantsev, A. K.
    Setter, N.
    [J]. PHYSICAL REVIEW B, 2012, 86 (10)
  • [4] Formation of charged ferroelectric domain walls with controlled periodicity
    Petr S. Bednyakov
    Tomas Sluka
    Alexander K. Tagantsev
    Dragan Damjanovic
    Nava Setter
    [J]. Scientific Reports, 5
  • [5] Formation of charged ferroelectric domain walls with controlled periodicity
    Bednyakov, Petr S.
    Sluka, Tomas
    Tagantsev, Alexander K.
    Damjanovic, Dragan
    Setter, Nava
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [6] Hall effect in charged conducting ferroelectric domain walls
    M. P. Campbell
    J.P.V. McConville
    R.G.P. McQuaid
    D. Prabhakaran
    A. Kumar
    J. M. Gregg
    [J]. Nature Communications, 7
  • [7] Hall effect in charged conducting ferroelectric domain walls
    Campbell, M. P.
    McConville, J. P. V.
    McQuaid, R. G. P.
    Prabhakaran, D.
    Kumar, A.
    Gregg, J. M.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] ELECTRO-MECHANICAL PROPERTIES OF FERROELECTRIC-CRYSTALS WITH CHARGED DOMAIN-WALLS
    BORODIN, VZ
    PIKALEV, EM
    SCHNEIDER, EY
    [J]. FERROELECTRICS, 1982, 42 (1-4) : 399 - 402
  • [9] Charged domain walls as quantum strings on a lattice
    Eskes, H
    Osman, OY
    Grimberg, R
    van Saarloos, W
    Zaanen, J
    [J]. PHYSICAL REVIEW B, 1998, 58 (11): : 6963 - 6981
  • [10] Polarization driven conductance variations at charged ferroelectric domain walls
    Pawlik, A. -S.
    Kaempfe, T.
    Haussmann, A.
    Woike, T.
    Treske, U.
    Knupfer, M.
    Buechner, B.
    Soergel, E.
    Streubel, R.
    Koitzsch, A.
    Eng, L. M.
    [J]. NANOSCALE, 2017, 9 (30) : 10933 - 10939