R Package multiPIM: A Causal Inference Approach to Variable Importance Analysis

被引:0
|
作者
Ritter, Stephan J. [1 ,2 ]
Jewell, Nicholas P. [3 ,4 ]
Hubbard, Alan E. [3 ]
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Oakland, CA 94612 USA
[2] Omicia Inc, Oakland, CA 94612 USA
[3] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2014年 / 57卷 / 08期
关键词
variable importance; targeted maximum likelihood; super learner; double robust estimation; WESTERN COLLABORATIVE GROUP; CORONARY-HEART-DISEASE; FOLLOW-UP EXPERIENCE; PREDICTION; MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe the R package multiPIM, including statistical background, functionality and user options. The package is for variable importance analysis, and is meant primarily for analyzing data from exploratory epidemiological studies, though it could certainly be applied in other areas as well. The approach taken to variable importance comes from the causal inference field, and is different from approaches taken in other R packages. By default, multiPIM uses a double robust targeted maximum likelihood estimator (TMLE) of a parameter akin to the attributable risk. Several regression methods/machine learning algorithms are available for estimating the nuisance parameters of the models, including super learner, a meta-learner which combines several different algorithms into one. We describe a simulation in which the double robust TMLE is compared to the graphical computation estimator. We also provide example analyses using two data sets which are included with the package.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [1] Variable Importance Matching for Causal Inference
    Lanners, Quinn
    Parikh, Harsh
    Volfovsky, Alexander
    Rudin, Cynthia
    Page, David
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1174 - 1184
  • [2] MRPC: An R Package for Inference of Causal Graphs
    Badsha, Md Bahadur
    Martin, Evan A.
    Fu, Audrey Qiuyan
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [3] Causal Inference Using Graphical Models with the R Package pcalg
    Kalisch, Markus
    Maechler, Martin
    Colombo, Diego
    Maathuis, Marloes H.
    Buehlmann, Peter
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 47 (11): : 1 - 26
  • [4] CWGCNA: an R package to perform causal inference from the WGCNA framework
    Liu, Yu
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (02)
  • [5] Mendelian randomization as an instrumental variable approach to causal inference
    Didelez, Vanessa
    Sheehan, Nuala
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (04) : 309 - 330
  • [6] mediation: R Package for Causal Mediation Analysis
    Tingley, Dustin
    Yamamoto, Teppei
    Hirose, Kentaro
    Keele, Luke
    Imai, Kosuke
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 59 (05):
  • [7] CIMTx: An R Package for Causal Inference with Multiple Treatments using Observational Data
    Hu, Lianyuan
    Ji, Jiayi
    [J]. R JOURNAL, 2022, 14 (03): : 213 - 230
  • [8] Robust causal inference using directed acyclic graphs: the R package 'dagitty'
    Textor, Johannes
    van der Zander, Benito
    Gilthorpe, Mark S.
    Liskiewicz, Maciej
    Ellison, George T. H.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (06) : 1887 - 1894
  • [9] vivid: An R package for Variable Importance and Variable Interactions Displays for Machine Learning Models
    Inglis, Alan
    Parnell, Andrew
    Hurley, Catherine
    [J]. R JOURNAL, 2023, 15 (02): : 344 - 361
  • [10] A nonparametric binomial likelihood approach for causal inference in instrumental variable models
    Lee, Kwonsang
    Bhattacharya, Bhaswar B.
    Qin, Jing
    Small, Dylan S.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (04) : 1055 - 1077