Magnetomotive optical coherence elastography for microrheology of biological tissues

被引:44
|
作者
Crecea, Vasilica [1 ,2 ]
Ahmad, Adeel [1 ,3 ]
Boppart, Stephen A. [1 ,3 ,4 ,5 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Internal Med, Urbana, IL 61801 USA
基金
美国国家卫生研究院;
关键词
biomechanical properties; magnetic nanoparticles; microrheology; optical coherence elastography; OCT;
D O I
10.1117/1.JBO.18.12.121504
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical coherence elastography (OCE) is an established paradigm for measuring biomechanical properties of tissues and cells noninvasively, in real time, and with high resolution. We present a different development of a spectral domain OCE technique that enables simultaneous measurements of multiple biomechanical parameters of biological tissues. Our approach extends the capabilities of magnetomotive OCE (MM-OCE), which utilizes iron oxide magnetic nanoparticles (MNPs) distributed and embedded in the specimens as transducers for inducing motion. Step-wise application of an external magnetic field results in displacements in the tissue specimens that are deduced from sensitive phase measurements made with the MM-OCE system. We analyzed freshly excised rabbit lung and muscle tissues. We observe that while they present some similarities, rabbit lung and muscle tissue displacements display characteristic differentiating features. Both tissue types undergo a fast initial displacement followed by a rapidly damped oscillation and the onset of creep. However, the damping is faster in muscle compared to lung tissue, while the creep is steeper in muscle. This approach has the potential to become a novel way of performing real-time measurements of biomechanical properties of tissues and to enable the development of different diagnostic and monitoring tools in biology and medicine. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Optical coherence elastography of developing biological tissues
    Ko, HJ
    Tan, W
    Stack, R
    Boppart, SA
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE IX, 2005, 5690 : 187 - 194
  • [2] Mechanical contrast in spectroscopic magnetomotive optical coherence elastography
    Ahmad, Adeel
    Huang, Pin-Chieh
    Sobh, Nahil A.
    Pande, Paritosh
    Kim, Jongsik
    Boppart, Stephen A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (17): : 6655 - 6668
  • [3] PROBING OF CF MUCUS MICRORHEOLOGY WITH MAGNETOMOTIVE MICRO-OPTICAL COHERENCE TOMOGRAPHY
    Yu, L.
    Khimchenko, A.
    Leung, H. M.
    Birket, S.
    Rowe, S.
    Tearney, G. J.
    PEDIATRIC PULMONOLOGY, 2020, 55 : S52 - S52
  • [4] Manifestations of nonlinear elasticity of biological tissues in compressional optical coherence elastography
    Zaitsev, Vladimir Yu.
    Matveyev, Alexander L.
    Matveev, Lev A.
    Gubarkova, Ekaterina V.
    Sovetsky, Aleksandr A.
    Sirotkina, Marina A.
    Gelikonov, Grigory V.
    Zagaynova, Elena V.
    Gladkova, Natalia D.
    Vitkin, Alex
    NOVEL BIOPHOTONICS TECHNIQUES AND APPLICATIONS IV, 2017, 10413
  • [5] PARTICLE-TRACKING MICRORHEOLOGY USING MAGNETOMOTIVE MICRO-OPTICAL COHERENCE TOMOGRAPHY
    Khimchenko, A.
    Leung, H. M.
    Birket, S.
    Adewale, A. T.
    Fernandez-Petty, C. M.
    Beatty, M.
    Rowe, S. M.
    Tearney, G. J.
    PEDIATRIC PULMONOLOGY, 2018, 53 : 201 - 201
  • [6] PARTICLE-TRACKING MICRORHEOLOGY USING MAGNETOMOTIVE MICRO-OPTICAL COHERENCE TOMOGRAPHY
    Khimchenko, A.
    Leung, H. M.
    Birket, S.
    Adewale, A. T.
    Fernandez-Petty, C. M.
    Rowe, S.
    Tearney, G. J.
    PEDIATRIC PULMONOLOGY, 2019, 54 : S155 - S155
  • [7] Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves
    Ahmad, Adeel
    Kim, Jongsik
    Sobh, Nahil A.
    Shemonski, Nathan D.
    Boppart, Stephen A.
    BIOMEDICAL OPTICS EXPRESS, 2014, 5 (07): : 2349 - 2361
  • [8] Practical obstacles and their mitigation strategies in compressional optical coherence elastography of biological tissues
    Zaitsev, Vladimir Y.
    Matveyev, Alexandr L.
    Matveev, Lev A.
    Gubarkova, Ekaterina V.
    Sovetsky, Alexandr A.
    Sirotkina, Marina A.
    Gelikonov, Grigory V.
    Zagaynova, Elena V.
    Gladkova, Natalia D.
    Vitkin, Alex
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2017, 10 (06)
  • [9] Magnetomotive optical coherence elastography for relating lung structure and function in Cystic Fibrosis
    Chhetri, Raghav K.
    Carpenter, Jerome
    Superfine, Richard
    Randell, Scott H.
    Oldenburg, Amy L.
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XIV, 2010, 7554
  • [10] Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics
    Huang, Pin-Chieh
    Pande, Paritosh
    Ahmad, Adeel
    Marjanovic, Marina
    Spillman, Darold R., Jr.
    Odintsov, Boris
    Boppart, Stephen A.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2016, 22 (04) : 104 - 119